File size: 5,197 Bytes
3f1212d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright 2022 Lance Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""COCO: Microsoft COCO Dataset.

https://cocodataset.org/#home
"""

import os
from typing import List

import datasets
import lance
import pyarrow as pa
import pyarrow.compute as pc

_CLASS_MAP = {
    1: "person",
    2: "bicycle",
    3: "car",
    4: "motorcycle",
    5: "airplane",
    6: "bus",
    7: "train",
    8: "truck",
    9: "boat",
    10: "traffic light",
    11: "fire hydrant",
    13: "stop sign",
    14: "parking meter",
    15: "bench",
    16: "bird",
    17: "cat",
    18: "dog",
    19: "horse",
    20: "sheep",
    21: "cow",
    22: "elephant",
    23: "bear",
    24: "zebra",
    25: "giraffe",
    27: "backpack",
    28: "umbrella",
    31: "handbag",
    32: "tie",
    33: "suitcase",
    34: "frisbee",
    35: "skis",
    36: "snowboard",
    37: "sports ball",
    38: "kite",
    39: "baseball bat",
    40: "baseball glove",
    41: "skateboard",
    42: "surfboard",
    43: "tennis racket",
    44: "bottle",
    46: "wine glass",
    47: "cup",
    48: "fork",
    49: "knife",
    50: "spoon",
    51: "bowl",
    52: "banana",
    53: "apple",
    54: "sandwich",
    55: "orange",
    56: "broccoli",
    57: "carrot",
    58: "hot dog",
    59: "pizza",
    60: "donut",
    61: "cake",
    62: "chair",
    63: "couch",
    64: "potted plant",
    65: "bed",
    67: "dining table",
    70: "toilet",
    72: "tv",
    73: "laptop",
    74: "mouse",
    75: "remote",
    76: "keyboard",
    77: "cell phone",
    78: "microwave",
    79: "oven",
    80: "toaster",
    81: "sink",
    82: "refrigerator",
    84: "book",
    85: "clock",
    86: "vase",
    87: "scissors",
    88: "teddy bear",
    89: "hair drier",
    90: "toothbrush",
}
_DATASET_URI = (
    "https://eto-public.s3.us-west-2.amazonaws.com/datasets/coco/coco.lance.tar.gz"
)


class Coco(datasets.ArrowBasedBuilder):
    """COCO: Microsoft common object in context dataset"""

    def _info(self):
        class_names = []
        for i in range(0, max(_CLASS_MAP.keys()) + 1):
            class_names.append(_CLASS_MAP.get(i, f"N/A-{i}"))
        return datasets.DatasetInfo(
            description="COCO: Microsoft object detection dataset",
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "split": datasets.Value("string"),
                    "annotations": datasets.Sequence(
                        {
                            "bbox": datasets.Sequence(
                                datasets.Value("float32"), length=4
                            ),
                            "category_id": datasets.ClassLabel(names=class_names),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/eto-ai/lance/tree/main/python/benchmarks/coco",
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:
        extracted_dir = dl_manager.download_and_extract(_DATASET_URI)
        base_uri = os.path.join(extracted_dir, "coco.lance")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"split": "train", "base_uri": base_uri},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"split": "val", "base_uri": base_uri},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"split": "test", "base_uri": base_uri},
            ),
        ]

    def _generate_tables(self, split, base_uri):
        idx = 0
        dataset = lance.dataset(base_uri)
        scanner = dataset.scanner(
            filter=pc.field("split") == split,
        )
        for batch in scanner.to_batches():  # type: pa.RecordBatch
            cols = []
            names = []

            annotations = batch.column("annotations")
            if len(annotations) == 0:
                continue
            cols.append(annotations)
            names.append("annotations")

            # Decode split because Huggingface does not support dictionary yet.
            split_arr = batch.column("split").dictionary_decode()
            cols.append(split_arr)
            names.append("split")

            bytes_arr = batch.column("image").storage
            arr = pa.StructArray.from_arrays([bytes_arr], ["bytes"])
            cols.append(arr)
            names.append("image")

            yield idx, pa.Table.from_arrays(cols, names)
            idx += 1