Datasets:

ArXiv:
License:
File size: 6,975 Bytes
a90e29b
 
 
16a6b55
52c5a1b
 
 
 
 
 
 
16a6b55
 
 
 
52c5a1b
16a6b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c5a1b
 
 
 
 
 
 
 
 
 
 
 
 
16a6b55
 
 
 
 
 
 
52c5a1b
 
 
16a6b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
---
license: cc-by-3.0
---

Updates 

- 2024/07/09: we also uploaded a new version of YODAS as [YODAS2](https://huggingface.co./datasets/espnet/yodas2), it provides unsegmented audios and higher sampling rate (24k)


## README

This is the YODAS manual/automatic subset from our YODAS dataset, it has 369,510 hours of speech.

This dataset contains audio utterances and corresponding captions (manual or automatic) from YouTube. Note that manual caption only indicates that it is uploaded by users, but not necessarily transcribed by a human

For more details about YODAS dataset, please refer to [our paper](https://arxiv.org/abs/2406.00899)

## Usage:

Considering the extremely large size of the entire dataset, we support two modes of dataset loadings:

**standard mode**: each subset will be downloaded to the local dish before first iterating. 

```python
from datasets import load_dataset

# Note this will take very long time to download and preprocess
# you can try small subset for testing purpose
ds = load_dataset('espnet/yodas', 'en000')
print(next(iter(ds['train'])))
```

**streaming mode** most of the files will be streamed instead of downloaded to your local deivce. It can be used to inspect this dataset quickly.

```python
from datasets import load_dataset

# this streaming loading will finish quickly
ds = load_dataset('espnet/yodas', 'en000', streaming=True)


#{'id': '9774', 'utt_id': 'YoRjzEnRcqu-00000-00000716-00000819', 'audio': {'path': None, 'array': array([-0.009552  , -0.01086426, -0.012146  , ..., -0.01992798,
#       -0.01885986, -0.01074219]), 'sampling_rate': 16000}, 'text': 'There is a saying'}
print(next(iter(ds['train'])))
```

## Subsets/Shards

There are 149 languages in this dataset, each language is sharded into at least 1 shard to make it easy for our processing and uploading purposes. The raw data of each shard contains 500G at most.

Statistics of each shard can be found in the last section.

We distinguish manual caption subset and automatic caption subset by the first digit in each shard's name. The first digit is 0 if it contains manual captions, 1 if it contains automatic captions. 

For example, `en000` to `en005` are the English shards containing manual subsets, and `en100` to `en127` contains the automatic subsets.

## Reference

```
@inproceedings{li2023yodas,
  title={Yodas: Youtube-Oriented Dataset for Audio and Speech},
  author={Li, Xinjian and Takamichi, Shinnosuke and Saeki, Takaaki and Chen, William and Shiota, Sayaka and Watanabe, Shinji},
  booktitle={2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)},
  pages={1--8},
  year={2023},
  organization={IEEE}
}
```


## Contact

If you have any questions, feel free to contact us at the following email address.

We made sure that our dataset only consisted of videos with CC licenses during our downloading. But in case you find your video unintentionally included in our dataset and would like to delete it, you can send a delete request to the following email.

Remove the parenthesis `()` from the following email address

`(lixinjian)(1217)@gmail.com`


## Statistics

Note that there are no overlappings across different subsets, each audio can be included in the dataset at most once.


| Subset name | Hours |
|------|--------|
|aa000|0.171472|
|ab000|0.358342|
|af000|0.880497|
|ak000|0.250858|
|am000|0.924708|
|ar000|289.707|
|as000|0.548239|
|ay000|0.0342722|
|az000|3.8537|
|ba000|0.0210556|
|be000|48.1537|
|bg000|46.8375|
|bh000|0.0127111|
|bi000|0.0125556|
|bm000|0.00214722|
|bn000|27.064|
|bo000|0.746211|
|br000|0.729914|
|bs000|9.36959|
|ca000|74.1909|
|co000|0.0418639|
|cr000|0.00584167|
|cs000|167.604|
|cy000|5.20017|
|da000|27.4345|
|de000|3063.81|
|de100|4998.11|
|de101|4995.08|
|de102|955.389|
|dz000|0.06365|
|ee000|0.0411722|
|el000|126.75|
|en000|4999.73|
|en001|5032.69|
|en002|5039.9|
|en003|5001.4|
|en004|5054.66|
|en005|4027.02|
|en100|5147.07|
|en101|5123.05|
|en102|5117.68|
|en103|5127.3|
|en104|5126.33|
|en105|5097.65|
|en106|5131.47|
|en107|5135.6|
|en108|5136.84|
|en109|5112.94|
|en110|5109|
|en111|5118.69|
|en112|5122.57|
|en113|5122.31|
|en114|5112.36|
|en115|5112.27|
|en116|5123.77|
|en117|5117.31|
|en118|5117.94|
|en119|5133.05|
|en120|5127.79|
|en121|5129.08|
|en122|5130.22|
|en123|5097.56|
|en124|5116.59|
|en125|5109.76|
|en126|5136.21|
|en127|2404.89|
|eo000|12.6874|
|es000|3737.86|
|es100|5125.25|
|es101|5130.44|
|es102|5145.66|
|es103|5138.26|
|es104|5139.57|
|es105|5138.95|
|es106|2605.26|
|et000|14.4129|
|eu000|19.6356|
|fa000|42.6734|
|ff000|0.0394972|
|fi000|212.899|
|fj000|0.0167806|
|fo000|0.183244|
|fr000|2423.7|
|fr100|5074.93|
|fr101|5057.79|
|fr102|5094.14|
|fr103|3222.95|
|fy000|0.0651667|
|ga000|1.49252|
|gd000|0.01885|
|gl000|9.52575|
|gn000|0.181356|
|gu000|1.99355|
|ha000|0.102931|
|hi000|480.79|
|hi100|2.74865|
|ho000|0.0562194|
|hr000|25.9171|
|ht000|1.07494|
|hu000|181.763|
|hy000|1.64412|
|ia000|0.0856056|
|id000|1420.09|
|id100|4902.79|
|id101|3560.82|
|ie000|0.134603|
|ig000|0.086875|
|ik000|0.00436667|
|is000|5.07075|
|it000|1454.98|
|it100|4989.62|
|it101|4242.87|
|iu000|0.0584278|
|iw000|161.373|
|ja000|1094.18|
|ja100|2929.94|
|jv000|1.08701|
|ka000|26.9727|
|ki000|0.000555556|
|kk000|3.72081|
|kl000|0.00575556|
|km000|3.98273|
|kn000|2.36041|
|ko000|2774.28|
|ko100|5018.29|
|ko101|5048.49|
|ko102|5018.27|
|ko103|2587.85|
|ks000|0.0150444|
|ku000|1.93419|
|ky000|14.3917|
|la000|7.26088|
|lb000|0.1115|
|lg000|0.00386111|
|ln000|0.188739|
|lo000|0.230986|
|lt000|17.6507|
|lv000|2.47671|
|mg000|0.169653|
|mi000|1.10089|
|mk000|5.54236|
|ml000|13.2386|
|mn000|2.0232|
|mr000|7.11602|
|ms000|28.0219|
|my000|2.35663|
|na000|0.0397056|
|nd000|0.00111111|
|ne000|2.34936|
|nl000|413.044|
|nl100|2490.13|
|no000|129.183|
|nv000|0.00319444|
|oc000|0.166108|
|om000|0.148478|
|or000|0.421436|
|pa000|1.58188|
|pl000|757.986|
|ps000|0.9871|
|pt000|1631.44|
|pt100|5044.57|
|pt101|5038.33|
|pt102|5041.59|
|pt103|3553.28|
|qu000|0.748772|
|rm000|0.192933|
|rn000|0.00401111|
|ro000|99.9175|
|ru000|4968.37|
|ru001|627.679|
|ru100|5098.3|
|ru101|5098|
|ru102|5119.43|
|ru103|5107.29|
|ru104|5121.73|
|ru105|5088.05|
|ru106|3393.44|
|rw000|0.640825|
|sa000|0.354139|
|sc000|0.00801111|
|sd000|0.0768722|
|sg000|0.000472222|
|sh000|0.250914|
|si000|4.2634|
|sk000|30.0155|
|sl000|22.9366|
|sm000|0.102333|
|sn000|0.0134722|
|so000|3.36819|
|sq000|3.48276|
|sr000|15.2849|
|st000|0.00324167|
|su000|0.0404639|
|sv000|127.411|
|sw000|1.93409|
|ta000|59.4805|
|te000|5.66794|
|tg000|0.272386|
|th000|497.14|
|th100|1.87429|
|ti000|0.343897|
|tk000|0.0651806|
|tn000|0.112181|
|to000|0.000555556|
|tr000|588.698|
|tr100|4067.68|
|ts000|0.00111111|
|tt000|0.0441194|
|ug000|0.0905|
|uk000|396.598|
|uk100|450.411|
|ur000|22.4373|
|uz000|5.29325|
|ve000|0.00355278|
|vi000|779.854|
|vi100|4963.77|
|vi101|4239.37|
|vo000|0.209436|
|wo000|0.0801528|
|xh000|0.126628|
|yi000|0.0810111|
|yo000|0.322206|
|zh000|299.368|
|zu000|0.139931|