File size: 6,975 Bytes
a90e29b 16a6b55 52c5a1b 16a6b55 52c5a1b 16a6b55 52c5a1b 16a6b55 52c5a1b 16a6b55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
---
license: cc-by-3.0
---
Updates
- 2024/07/09: we also uploaded a new version of YODAS as [YODAS2](https://huggingface.co./datasets/espnet/yodas2), it provides unsegmented audios and higher sampling rate (24k)
## README
This is the YODAS manual/automatic subset from our YODAS dataset, it has 369,510 hours of speech.
This dataset contains audio utterances and corresponding captions (manual or automatic) from YouTube. Note that manual caption only indicates that it is uploaded by users, but not necessarily transcribed by a human
For more details about YODAS dataset, please refer to [our paper](https://arxiv.org/abs/2406.00899)
## Usage:
Considering the extremely large size of the entire dataset, we support two modes of dataset loadings:
**standard mode**: each subset will be downloaded to the local dish before first iterating.
```python
from datasets import load_dataset
# Note this will take very long time to download and preprocess
# you can try small subset for testing purpose
ds = load_dataset('espnet/yodas', 'en000')
print(next(iter(ds['train'])))
```
**streaming mode** most of the files will be streamed instead of downloaded to your local deivce. It can be used to inspect this dataset quickly.
```python
from datasets import load_dataset
# this streaming loading will finish quickly
ds = load_dataset('espnet/yodas', 'en000', streaming=True)
#{'id': '9774', 'utt_id': 'YoRjzEnRcqu-00000-00000716-00000819', 'audio': {'path': None, 'array': array([-0.009552 , -0.01086426, -0.012146 , ..., -0.01992798,
# -0.01885986, -0.01074219]), 'sampling_rate': 16000}, 'text': 'There is a saying'}
print(next(iter(ds['train'])))
```
## Subsets/Shards
There are 149 languages in this dataset, each language is sharded into at least 1 shard to make it easy for our processing and uploading purposes. The raw data of each shard contains 500G at most.
Statistics of each shard can be found in the last section.
We distinguish manual caption subset and automatic caption subset by the first digit in each shard's name. The first digit is 0 if it contains manual captions, 1 if it contains automatic captions.
For example, `en000` to `en005` are the English shards containing manual subsets, and `en100` to `en127` contains the automatic subsets.
## Reference
```
@inproceedings{li2023yodas,
title={Yodas: Youtube-Oriented Dataset for Audio and Speech},
author={Li, Xinjian and Takamichi, Shinnosuke and Saeki, Takaaki and Chen, William and Shiota, Sayaka and Watanabe, Shinji},
booktitle={2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)},
pages={1--8},
year={2023},
organization={IEEE}
}
```
## Contact
If you have any questions, feel free to contact us at the following email address.
We made sure that our dataset only consisted of videos with CC licenses during our downloading. But in case you find your video unintentionally included in our dataset and would like to delete it, you can send a delete request to the following email.
Remove the parenthesis `()` from the following email address
`(lixinjian)(1217)@gmail.com`
## Statistics
Note that there are no overlappings across different subsets, each audio can be included in the dataset at most once.
| Subset name | Hours |
|------|--------|
|aa000|0.171472|
|ab000|0.358342|
|af000|0.880497|
|ak000|0.250858|
|am000|0.924708|
|ar000|289.707|
|as000|0.548239|
|ay000|0.0342722|
|az000|3.8537|
|ba000|0.0210556|
|be000|48.1537|
|bg000|46.8375|
|bh000|0.0127111|
|bi000|0.0125556|
|bm000|0.00214722|
|bn000|27.064|
|bo000|0.746211|
|br000|0.729914|
|bs000|9.36959|
|ca000|74.1909|
|co000|0.0418639|
|cr000|0.00584167|
|cs000|167.604|
|cy000|5.20017|
|da000|27.4345|
|de000|3063.81|
|de100|4998.11|
|de101|4995.08|
|de102|955.389|
|dz000|0.06365|
|ee000|0.0411722|
|el000|126.75|
|en000|4999.73|
|en001|5032.69|
|en002|5039.9|
|en003|5001.4|
|en004|5054.66|
|en005|4027.02|
|en100|5147.07|
|en101|5123.05|
|en102|5117.68|
|en103|5127.3|
|en104|5126.33|
|en105|5097.65|
|en106|5131.47|
|en107|5135.6|
|en108|5136.84|
|en109|5112.94|
|en110|5109|
|en111|5118.69|
|en112|5122.57|
|en113|5122.31|
|en114|5112.36|
|en115|5112.27|
|en116|5123.77|
|en117|5117.31|
|en118|5117.94|
|en119|5133.05|
|en120|5127.79|
|en121|5129.08|
|en122|5130.22|
|en123|5097.56|
|en124|5116.59|
|en125|5109.76|
|en126|5136.21|
|en127|2404.89|
|eo000|12.6874|
|es000|3737.86|
|es100|5125.25|
|es101|5130.44|
|es102|5145.66|
|es103|5138.26|
|es104|5139.57|
|es105|5138.95|
|es106|2605.26|
|et000|14.4129|
|eu000|19.6356|
|fa000|42.6734|
|ff000|0.0394972|
|fi000|212.899|
|fj000|0.0167806|
|fo000|0.183244|
|fr000|2423.7|
|fr100|5074.93|
|fr101|5057.79|
|fr102|5094.14|
|fr103|3222.95|
|fy000|0.0651667|
|ga000|1.49252|
|gd000|0.01885|
|gl000|9.52575|
|gn000|0.181356|
|gu000|1.99355|
|ha000|0.102931|
|hi000|480.79|
|hi100|2.74865|
|ho000|0.0562194|
|hr000|25.9171|
|ht000|1.07494|
|hu000|181.763|
|hy000|1.64412|
|ia000|0.0856056|
|id000|1420.09|
|id100|4902.79|
|id101|3560.82|
|ie000|0.134603|
|ig000|0.086875|
|ik000|0.00436667|
|is000|5.07075|
|it000|1454.98|
|it100|4989.62|
|it101|4242.87|
|iu000|0.0584278|
|iw000|161.373|
|ja000|1094.18|
|ja100|2929.94|
|jv000|1.08701|
|ka000|26.9727|
|ki000|0.000555556|
|kk000|3.72081|
|kl000|0.00575556|
|km000|3.98273|
|kn000|2.36041|
|ko000|2774.28|
|ko100|5018.29|
|ko101|5048.49|
|ko102|5018.27|
|ko103|2587.85|
|ks000|0.0150444|
|ku000|1.93419|
|ky000|14.3917|
|la000|7.26088|
|lb000|0.1115|
|lg000|0.00386111|
|ln000|0.188739|
|lo000|0.230986|
|lt000|17.6507|
|lv000|2.47671|
|mg000|0.169653|
|mi000|1.10089|
|mk000|5.54236|
|ml000|13.2386|
|mn000|2.0232|
|mr000|7.11602|
|ms000|28.0219|
|my000|2.35663|
|na000|0.0397056|
|nd000|0.00111111|
|ne000|2.34936|
|nl000|413.044|
|nl100|2490.13|
|no000|129.183|
|nv000|0.00319444|
|oc000|0.166108|
|om000|0.148478|
|or000|0.421436|
|pa000|1.58188|
|pl000|757.986|
|ps000|0.9871|
|pt000|1631.44|
|pt100|5044.57|
|pt101|5038.33|
|pt102|5041.59|
|pt103|3553.28|
|qu000|0.748772|
|rm000|0.192933|
|rn000|0.00401111|
|ro000|99.9175|
|ru000|4968.37|
|ru001|627.679|
|ru100|5098.3|
|ru101|5098|
|ru102|5119.43|
|ru103|5107.29|
|ru104|5121.73|
|ru105|5088.05|
|ru106|3393.44|
|rw000|0.640825|
|sa000|0.354139|
|sc000|0.00801111|
|sd000|0.0768722|
|sg000|0.000472222|
|sh000|0.250914|
|si000|4.2634|
|sk000|30.0155|
|sl000|22.9366|
|sm000|0.102333|
|sn000|0.0134722|
|so000|3.36819|
|sq000|3.48276|
|sr000|15.2849|
|st000|0.00324167|
|su000|0.0404639|
|sv000|127.411|
|sw000|1.93409|
|ta000|59.4805|
|te000|5.66794|
|tg000|0.272386|
|th000|497.14|
|th100|1.87429|
|ti000|0.343897|
|tk000|0.0651806|
|tn000|0.112181|
|to000|0.000555556|
|tr000|588.698|
|tr100|4067.68|
|ts000|0.00111111|
|tt000|0.0441194|
|ug000|0.0905|
|uk000|396.598|
|uk100|450.411|
|ur000|22.4373|
|uz000|5.29325|
|ve000|0.00355278|
|vi000|779.854|
|vi100|4963.77|
|vi101|4239.37|
|vo000|0.209436|
|wo000|0.0801528|
|xh000|0.126628|
|yi000|0.0810111|
|yo000|0.322206|
|zh000|299.368|
|zu000|0.139931|
|