File size: 12,909 Bytes
9a76195
 
 
 
 
ce179a2
bafedf1
 
ce179a2
9a76195
 
 
 
 
 
 
 
0205be3
9a76195
 
370de86
37a31ca
7ecd83e
bafedf1
 
 
a5723e8
 
 
 
 
 
 
 
 
 
 
6e20bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5723e8
 
 
 
6e20bd1
 
 
 
 
 
 
 
 
a5723e8
 
 
 
 
 
 
2114831
 
 
a5723e8
 
 
 
 
 
 
 
 
 
 
 
6e20bd1
 
 
 
 
 
 
 
 
 
 
 
a5723e8
 
 
 
6e20bd1
 
 
 
 
 
 
 
 
a5723e8
 
 
 
 
 
 
2114831
 
 
a5723e8
 
9a76195
 
7ecd83e
9a76195
 
 
 
37a31ca
9a76195
 
 
37a31ca
 
9a76195
 
 
 
 
 
 
 
 
 
 
 
 
b699ad9
9a76195
 
 
 
 
 
7ecd83e
9a76195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0765b0
 
 
 
9a76195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e083b8
 
 
 
9a76195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b699ad9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- es
- nl
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
- part-of-speech
paperswithcode_id: conll-2002
pretty_name: CoNLL-2002
configs:
- es
- nl
dataset_info:
- config_name: es
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: pos_tags
    sequence:
      class_label:
        names:
          '0': AO
          '1': AQ
          '2': CC
          '3': CS
          '4': DA
          '5': DE
          '6': DD
          '7': DI
          '8': DN
          '9': DP
          '10': DT
          '11': Faa
          '12': Fat
          '13': Fc
          '14': Fd
          '15': Fe
          '16': Fg
          '17': Fh
          '18': Fia
          '19': Fit
          '20': Fp
          '21': Fpa
          '22': Fpt
          '23': Fs
          '24': Ft
          '25': Fx
          '26': Fz
          '27': I
          '28': NC
          '29': NP
          '30': P0
          '31': PD
          '32': PI
          '33': PN
          '34': PP
          '35': PR
          '36': PT
          '37': PX
          '38': RG
          '39': RN
          '40': SP
          '41': VAI
          '42': VAM
          '43': VAN
          '44': VAP
          '45': VAS
          '46': VMG
          '47': VMI
          '48': VMM
          '49': VMN
          '50': VMP
          '51': VMS
          '52': VSG
          '53': VSI
          '54': VSM
          '55': VSN
          '56': VSP
          '57': VSS
          '58': Y
          '59': Z
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
          '7': B-MISC
          '8': I-MISC
  splits:
  - name: train
    num_bytes: 6672173
    num_examples: 8324
  - name: validation
    num_bytes: 1333784
    num_examples: 1916
  - name: test
    num_bytes: 1294156
    num_examples: 1518
  download_size: 4140690
  dataset_size: 9300113
- config_name: nl
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: pos_tags
    sequence:
      class_label:
        names:
          '0': Adj
          '1': Adv
          '2': Art
          '3': Conj
          '4': Int
          '5': Misc
          '6': N
          '7': Num
          '8': Prep
          '9': Pron
          '10': Punc
          '11': V
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
          '7': B-MISC
          '8': I-MISC
  splits:
  - name: train
    num_bytes: 5308959
    num_examples: 15807
  - name: validation
    num_bytes: 994298
    num_examples: 2896
  - name: test
    num_bytes: 1808862
    num_examples: 5196
  download_size: 3642241
  dataset_size: 8112119
---

# Dataset Card for CoNLL-2002

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [homepage](https://www.clips.uantwerpen.be/conll2002/ner/)
- **Repository:** [github](https://github.com/teropa/nlp/tree/master/resources/corpora/conll2002)
- **Paper:** [paper](https://www.aclweb.org/anthology/W02-2024/)
- **Point of Contact:** [Erik Tjong Kim Sang]([email protected])

### Dataset Summary

Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. Example:

[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .

The shared task of CoNLL-2002 concerns language-independent named entity recognition. We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups. The participants of the shared task will be offered training and test data for at least two languages. They will use the data for developing a named-entity recognition system that includes a machine learning component. Information sources other than the training data may be used in this shared task. We are especially interested in methods that can use additional unannotated data for improving their performance (for example co-training).

### Supported Tasks and Leaderboards

Named Entity Recognition (NER) is a subtask of Information Extraction. Different NER systems were evaluated as a part of the Sixth Message Understanding Conference in 1995 (MUC6). The target language was English. The participating systems performed well. However, many of them used language-specific resources for performing the task and it is unknown how they would have performed on another language than English.

After 1995 NER systems have been developed for some European languages and a few Asian languages. There have been at least two studies that have applied one NER system to different languages. Palmer and Day [PD97] have used statistical methods for finding named entities in newswire articles in Chinese, English, French, Japanese, Portuguese and Spanish. They found that the difficulty of the NER task was different for the six languages but that a large part of the task could be performed with simple methods. Cucerzan and Yarowsky [CY99] used both morphological and contextual clues for identifying named entities in English, Greek, Hindi, Rumanian and Turkish. With minimal supervision, they obtained overall F measures between 40 and 70, depending on the languages used.

- `named-entity-recognition`: The performance in this task is measured with [F1](https://huggingface.co./metrics/f1) (higher is better). A named entity is correct only if it is an exact match of the corresponding entity in the data.
- `parsing`: The performance in this task is measured with [F1](https://huggingface.co./metrics/f1) (higher is better). A part-of-speech tag is correct only if it is equal to the corresponding tag in the data.

### Languages

There are two languages available : Spanish (es) and Dutch (nl).

## Dataset Structure

### Data Instances

The examples look like this :

```
{'id': '0',
 'ner_tags': [5, 6, 0, 0, 0, 0, 3, 0, 0],
 'pos_tags': [4, 28, 13, 59, 28, 21, 29, 22, 20],
 'tokens': ['La', 'Coruña', ',', '23', 'may', '(', 'EFECOM', ')', '.']
}
```

The original data files within the Dutch sub-dataset have `-DOCSTART-` lines used to separate documents, but these lines are removed here.
Indeed `-DOCSTART-` is a special line that acts as a boundary between two different documents, and it is filtered out in this implementation.


### Data Fields

- `id`: id of the sample
- `tokens`: the tokens of the example text
- `ner_tags`: the NER tags of each token
- `pos_tags`: the POS tags of each token


The POS tags correspond to this list for Spanish:

```
'AO', 'AQ', 'CC', 'CS', 'DA', 'DE', 'DD', 'DI', 'DN', 'DP', 'DT', 'Faa', 'Fat', 'Fc', 'Fd', 'Fe', 'Fg', 'Fh', 'Fia', 'Fit', 'Fp', 'Fpa', 'Fpt', 'Fs', 'Ft', 'Fx', 'Fz', 'I', 'NC', 'NP', 'P0', 'PD', 'PI', 'PN', 'PP', 'PR', 'PT', 'PX', 'RG', 'RN', 'SP', 'VAI', 'VAM', 'VAN', 'VAP', 'VAS', 'VMG', 'VMI', 'VMM', 'VMN', 'VMP', 'VMS', 'VSG', 'VSI', 'VSM', 'VSN', 'VSP', 'VSS', 'Y', 'Z'
 ```

And this list for Dutch:

```
'Adj', 'Adv', 'Art', 'Conj', 'Int', 'Misc', 'N', 'Num', 'Prep', 'Pron', 'Punc', 'V'
```

The NER tags correspond to this list:
```
"O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC",
```

The NER tags have the same format as in the chunking task: a B denotes the first item of a phrase and an I any non-initial word. There are four types of phrases: person names (PER), organizations (ORG), locations (LOC) and miscellaneous names (MISC).

It is assumed that named entities are non-recursive and non-overlapping. In case a named entity is embedded in another named entity usually, only the top level entity is marked.

### Data Splits

For both configurations (Spanish and Dutch), there are three splits.

The original splits were named `train`, `testa` and `testb` and they correspond to the `train`, `validation` and `test` splits.

The splits have the following sizes :

|                            |  train |  validation |  test |
| -----                      |-------:|------------:|------:|
| N. Examples (Spanish)      |   8324 |        1916 |  1518 |
| N. Examples (Dutch)        |  15807 |        2896 |  5196 |

## Dataset Creation

### Curation Rationale

The dataset was introduced to introduce new resources to two languages that were under-served for statistical machine learning at the time, Dutch and Spanish.

[More Information Needed]

### Source Data

The Spanish data is a collection of news wire articles made available by the Spanish EFE News Agency. The articles are from May 2000.

The Dutch data consist of four editions of the Belgian newspaper "De Morgen" of 2000 (June 2, July 1, August 1 and September 1).

#### Initial Data Collection and Normalization

The articles were word-tokenized, information on the exact pre-processing pipeline is unavailable.

#### Who are the source language producers?

The source language was produced by journalists and writers employed by the news agency and newspaper mentioned above.

### Annotations

#### Annotation process

For the Dutch data, the annotator has followed the MITRE and SAIC guidelines for named entity recognition (Chinchor et al., 1999) as well as possible.

#### Who are the annotators?

The Spanish data annotation was carried out by the TALP Research Center of the Technical University of Catalonia (UPC) and the Center of Language and Computation (CLiC) of the University of Barcelona (UB).

The Dutch data was annotated as a part of the Atranos project at the University of Antwerp.

### Personal and Sensitive Information

The data is sourced from newspaper source and only contains mentions of public figures or individuals

## Considerations for Using the Data

### Social Impact of Dataset

Named Entity Recognition systems can be used to efficiently index news text, allowing to easily gather all information pertaining to an organization or individual. Making such resources widely available in languages other than English can support better research and user experience for a larger part of the world's population. At the same time, better indexing and discoverability can also enable surveillance by state actors.

### Discussion of Biases

News text reproduces the biases of society, and any system trained on news data should be cognizant of these limitations and the risk for models to learn spurious correlations in this context, for example between a person's gender and their occupation.

### Other Known Limitations

Users should keep in mind that the dataset only contains news text, which might limit the applicability of the developed systems to other domains.

## Additional Information

### Dataset Curators

The annotation of the Spanish data was funded by the European Commission through the NAMIC project (IST-1999-12392).

### Licensing Information

The licensing status of the data, especially the news source text, is unknown.

### Citation Information

Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
```
@inproceedings{tjong-kim-sang-2002-introduction,
    title = "Introduction to the {C}o{NLL}-2002 Shared Task: Language-Independent Named Entity Recognition",
    author = "Tjong Kim Sang, Erik F.",
    booktitle = "{COLING}-02: The 6th Conference on Natural Language Learning 2002 ({C}o{NLL}-2002)",
    year = "2002",
    url = "https://www.aclweb.org/anthology/W02-2024",
}
```

### Contributions

Thanks to [@lhoestq](https://github.com/lhoestq) for adding this dataset.