File size: 9,233 Bytes
9a76195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b104e73
 
 
9a76195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b104e73
9a76195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition"""

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{tjong-kim-sang-2002-introduction,
    title = "Introduction to the {C}o{NLL}-2002 Shared Task: Language-Independent Named Entity Recognition",
    author = "Tjong Kim Sang, Erik F.",
    booktitle = "{COLING}-02: The 6th Conference on Natural Language Learning 2002 ({C}o{NLL}-2002)",
    year = "2002",
    url = "https://www.aclweb.org/anthology/W02-2024",
}
"""

_DESCRIPTION = """\
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities.

Example:
[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .

The shared task of CoNLL-2002 concerns language-independent named entity recognition.
We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups.
The participants of the shared task will be offered training and test data for at least two languages.
They will use the data for developing a named-entity recognition system that includes a machine learning component.
Information sources other than the training data may be used in this shared task.
We are especially interested in methods that can use additional unannotated data for improving their performance (for example co-training).

The train/validation/test sets are available in Spanish and Dutch.

For more details see https://www.clips.uantwerpen.be/conll2002/ner/ and https://www.aclweb.org/anthology/W02-2024/
"""

_URL = "https://raw.githubusercontent.com/teropa/nlp/master/resources/corpora/conll2002/"
_ES_TRAINING_FILE = "esp.train"
_ES_DEV_FILE = "esp.testa"
_ES_TEST_FILE = "esp.testb"
_NL_TRAINING_FILE = "ned.train"
_NL_DEV_FILE = "ned.testa"
_NL_TEST_FILE = "ned.testb"


class Conll2002Config(datasets.BuilderConfig):
    """BuilderConfig for Conll2002"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2002.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(Conll2002Config, self).__init__(**kwargs)


class Conll2002(datasets.GeneratorBasedBuilder):
    """Conll2002 dataset."""

    BUILDER_CONFIGS = [
        Conll2002Config(name="es", version=datasets.Version("1.0.0"), description="Conll2002 Spanish dataset"),
        Conll2002Config(name="nl", version=datasets.Version("1.0.0"), description="Conll2002 Dutch dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "AO",
                                "AQ",
                                "CC",
                                "CS",
                                "DA",
                                "DE",
                                "DD",
                                "DI",
                                "DN",
                                "DP",
                                "DT",
                                "Faa",
                                "Fat",
                                "Fc",
                                "Fd",
                                "Fe",
                                "Fg",
                                "Fh",
                                "Fia",
                                "Fit",
                                "Fp",
                                "Fpa",
                                "Fpt",
                                "Fs",
                                "Ft",
                                "Fx",
                                "Fz",
                                "I",
                                "NC",
                                "NP",
                                "P0",
                                "PD",
                                "PI",
                                "PN",
                                "PP",
                                "PR",
                                "PT",
                                "PX",
                                "RG",
                                "RN",
                                "SP",
                                "VAI",
                                "VAM",
                                "VAN",
                                "VAP",
                                "VAS",
                                "VMG",
                                "VMI",
                                "VMM",
                                "VMN",
                                "VMP",
                                "VMS",
                                "VSG",
                                "VSI",
                                "VSM",
                                "VSN",
                                "VSP",
                                "VSS",
                                "Y",
                                "Z",
                            ]
                        )
                        if self.config.name == "es"
                        else datasets.features.ClassLabel(
                            names=["Adj", "Adv", "Art", "Conj", "Int", "Misc", "N", "Num", "Prep", "Pron", "Punc", "V"]
                        )
                    ),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PER",
                                "I-PER",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                                "B-MISC",
                                "I-MISC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://www.aclweb.org/anthology/W02-2024/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_ES_TRAINING_FILE if self.config.name == 'es' else _NL_TRAINING_FILE}",
            "dev": f"{_URL}{_ES_DEV_FILE if self.config.name == 'es' else _NL_DEV_FILE}",
            "test": f"{_URL}{_ES_TEST_FILE if self.config.name == 'es' else _NL_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            pos_tags = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "pos_tags": pos_tags,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        pos_tags = []
                        ner_tags = []
                else:
                    # conll2002 tokens are space separated
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    pos_tags.append(splits[1])
                    ner_tags.append(splits[2].rstrip())
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "pos_tags": pos_tags,
                "ner_tags": ner_tags,
            }