Seosnaps
commited on
Update hausa_2_eng_2.py
Browse files- hausa_2_eng_2.py +185 -0
hausa_2_eng_2.py
CHANGED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
import csv
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
from datasets.utils.py_utils import size_str
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from .languages import LANGUAGES
|
13 |
+
from .release_stats import STATS
|
14 |
+
|
15 |
+
|
16 |
+
_CITATION = """\
|
17 |
+
@inproceedings{commonvoice:2020,
|
18 |
+
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
|
19 |
+
title = {Common Voice: A Massively-Multilingual Speech Corpus},
|
20 |
+
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
|
21 |
+
pages = {4211--4215},
|
22 |
+
year = 2020
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
|
27 |
+
|
28 |
+
|
29 |
+
_HOMEPAGE = "https://huggingface.co/datasets/Seon25/hausa_2_eng_2"
|
30 |
+
|
31 |
+
_BASE_URL = "https://huggingface.co/datasets/Seon25/hausa_2_eng_2/main"
|
32 |
+
|
33 |
+
_AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar"
|
34 |
+
|
35 |
+
_TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}.tsv"
|
36 |
+
|
37 |
+
_N_SHARDS_URL = _BASE_URL + "n_shards.json"
|
38 |
+
|
39 |
+
|
40 |
+
class Hausa2EngConfig(datasets.BuilderConfig):
|
41 |
+
"""BuilderConfig for CommonVoice."""
|
42 |
+
|
43 |
+
def __init__(self, name, version, **kwargs):
|
44 |
+
self.language = kwargs.pop("language", None)
|
45 |
+
self.release_date = kwargs.pop("release_date", None)
|
46 |
+
self.num_clips = kwargs.pop("num_clips", None)
|
47 |
+
self.num_speakers = kwargs.pop("num_speakers", None)
|
48 |
+
self.validated_hr = kwargs.pop("validated_hr", None)
|
49 |
+
self.total_hr = kwargs.pop("total_hr", None)
|
50 |
+
self.size_bytes = kwargs.pop("size_bytes", None)
|
51 |
+
self.size_human = size_str(self.size_bytes)
|
52 |
+
description = (
|
53 |
+
f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. "
|
54 |
+
f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data "
|
55 |
+
f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. "
|
56 |
+
f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}."
|
57 |
+
)
|
58 |
+
super(Hausa2EngConfig, self).__init__(
|
59 |
+
name=name,
|
60 |
+
version=datasets.Version(version),
|
61 |
+
description=description,
|
62 |
+
**kwargs,
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
class Hausa2Eng(datasets.GeneratorBasedBuilder):
|
68 |
+
DEFAULT_WRITER_BATCH_SIZE = 1000
|
69 |
+
|
70 |
+
BUILDER_CONFIGS = [
|
71 |
+
Hausa2EngConfig(
|
72 |
+
name=lang,
|
73 |
+
version=STATS["version"],
|
74 |
+
language=LANGUAGES[lang],
|
75 |
+
release_date=STATS["date"],
|
76 |
+
num_clips=lang_stats["clips"],
|
77 |
+
num_speakers=lang_stats["users"],
|
78 |
+
validated_hr=float(lang_stats["validHrs"]) if lang_stats["validHrs"] else None,
|
79 |
+
total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None,
|
80 |
+
size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None,
|
81 |
+
)
|
82 |
+
for lang, lang_stats in STATS["locales"].items()
|
83 |
+
]
|
84 |
+
|
85 |
+
def _info(self):
|
86 |
+
total_languages = len(STATS["locales"])
|
87 |
+
total_valid_hours = STATS["totalValidHrs"]
|
88 |
+
description = (
|
89 |
+
"Common Voice is Mozilla's initiative to help teach machines how real people speak. "
|
90 |
+
f"The dataset currently consists of {total_valid_hours} validated hours of speech "
|
91 |
+
f" in {total_languages} languages, but more voices and languages are always added."
|
92 |
+
)
|
93 |
+
features = datasets.Features(
|
94 |
+
{
|
95 |
+
"client_id": datasets.Value("string"),
|
96 |
+
"path": datasets.Value("string"),
|
97 |
+
"audio": datasets.features.Audio(sampling_rate=48_000),
|
98 |
+
"sentence": datasets.Value("string"),
|
99 |
+
"up_votes": datasets.Value("int64"),
|
100 |
+
"down_votes": datasets.Value("int64"),
|
101 |
+
"age": datasets.Value("string"),
|
102 |
+
"gender": datasets.Value("string"),
|
103 |
+
"accent": datasets.Value("string"),
|
104 |
+
"locale": datasets.Value("string"),
|
105 |
+
"segment": datasets.Value("string"),
|
106 |
+
"variant": datasets.Value("string"),
|
107 |
+
}
|
108 |
+
)
|
109 |
+
|
110 |
+
return datasets.DatasetInfo(
|
111 |
+
description=description,
|
112 |
+
features=features,
|
113 |
+
supervised_keys=None,
|
114 |
+
homepage=_HOMEPAGE,
|
115 |
+
license=_LICENSE,
|
116 |
+
citation=_CITATION,
|
117 |
+
version=self.config.version,
|
118 |
+
)
|
119 |
+
|
120 |
+
def _split_generators(self, dl_manager):
|
121 |
+
lang = self.config.name
|
122 |
+
n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
|
123 |
+
with open(n_shards_path, encoding="utf-8") as f:
|
124 |
+
n_shards = json.load(f)
|
125 |
+
|
126 |
+
audio_urls = {}
|
127 |
+
splits = ("train", "dev", "test", "other", "invalidated")
|
128 |
+
for split in splits:
|
129 |
+
audio_urls[split] = [
|
130 |
+
_AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split])
|
131 |
+
]
|
132 |
+
archive_paths = dl_manager.download(audio_urls)
|
133 |
+
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
|
134 |
+
|
135 |
+
meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits}
|
136 |
+
meta_paths = dl_manager.download_and_extract(meta_urls)
|
137 |
+
|
138 |
+
split_generators = []
|
139 |
+
split_names = {
|
140 |
+
"train": datasets.Split.TRAIN,
|
141 |
+
"dev": datasets.Split.VALIDATION,
|
142 |
+
"test": datasets.Split.TEST,
|
143 |
+
}
|
144 |
+
for split in splits:
|
145 |
+
split_generators.append(
|
146 |
+
datasets.SplitGenerator(
|
147 |
+
name=split_names.get(split, split),
|
148 |
+
gen_kwargs={
|
149 |
+
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
|
150 |
+
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
|
151 |
+
"meta_path": meta_paths[split],
|
152 |
+
},
|
153 |
+
),
|
154 |
+
)
|
155 |
+
|
156 |
+
return split_generators
|
157 |
+
|
158 |
+
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
|
159 |
+
data_fields = list(self._info().features.keys())
|
160 |
+
metadata = {}
|
161 |
+
with open(meta_path, encoding="utf-8") as f:
|
162 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
163 |
+
for row in tqdm(reader, desc="Reading metadata..."):
|
164 |
+
if not row["path"].endswith(".mp3"):
|
165 |
+
row["path"] += ".mp3"
|
166 |
+
# accent -> accents in CV 8.0
|
167 |
+
if "accents" in row:
|
168 |
+
row["accent"] = row["accents"]
|
169 |
+
del row["accents"]
|
170 |
+
# if data is incomplete, fill with empty values
|
171 |
+
for field in data_fields:
|
172 |
+
if field not in row:
|
173 |
+
row[field] = ""
|
174 |
+
metadata[row["path"]] = row
|
175 |
+
|
176 |
+
for i, audio_archive in enumerate(archives):
|
177 |
+
for path, file in audio_archive:
|
178 |
+
_, filename = os.path.split(path)
|
179 |
+
if filename in metadata:
|
180 |
+
result = dict(metadata[filename])
|
181 |
+
# set the audio feature and the path to the extracted file
|
182 |
+
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
|
183 |
+
result["audio"] = {"path": path, "bytes": file.read()}
|
184 |
+
result["path"] = path
|
185 |
+
yield path, result
|