File size: 7,059 Bytes
f57ae1a 65df539 f57ae1a 65df539 f57ae1a 65df539 08c3539 c164530 08c3539 f57ae1a c164530 f57ae1a 755bba7 2ba158b 9199788 01df533 9199788 f57ae1a de399e6 65df539 f57ae1a 65df539 f57ae1a 65df539 f57ae1a 65df539 c164530 65df539 df293aa 12b7aae 65df539 12b7aae 65df539 12b7aae c164530 12b7aae c164530 12b7aae 65df539 08c3539 df293aa c164530 08c3539 65df539 08c3539 65df539 f57ae1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
#!/usr/bin/python
import datasets
import itertools
import os
import pyarrow as pa
import pyarrow.parquet as pq
BASE_DATASET = "ejschwartz/oo-method-test"
def setexe(r):
r['Dirname'], r['Exename'] = os.path.split(r['Binary'])
return r
class OOMethodTestDataset(datasets.ArrowBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="combined",
version=datasets.Version("1.0.0"),
description="All data files combined",
),
datasets.BuilderConfig(
name="byrow",
version=datasets.Version("1.0.0"),
description="Split by example (dumb)",
),
datasets.BuilderConfig(
name="byfuncname",
version=datasets.Version("1.0.0"),
description="Split by function name",
),
datasets.BuilderConfig(
name="bylibrary",
version=datasets.Version("1.0.0"),
description="Split so that library functions (those appearing in >1 exe) are used for training, and non-library functions are used for testing",
),
datasets.BuilderConfig(
name="bylibrarydedup",
version=datasets.Version("1.0.0"),
description="Split so that library functions (those appearing in >1 exe) are used for training, and non-library functions are used for testing. Only one example per function name is retained per program.",
),
datasets.BuilderConfig(
name="bylibrarydedupall",
version=datasets.Version("1.0.0"),
description="Split so that library functions (those appearing in >1 exe) are used for training, and non-library functions are used for testing. Only one example per function name is retained.",
)
]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _info(self):
return datasets.DatasetInfo(
features = datasets.Features({'Binary': datasets.Value(dtype='string', id=None),
'Addr': datasets.Value(dtype='string'),
'Name': datasets.Value(dtype='string'),
'Type': datasets.ClassLabel(num_classes=2, names=['func', 'method']),
'Disassembly': datasets.Value(dtype='string'),
'Dirname': datasets.Value(dtype='string'),
'Exename': datasets.Value(dtype='string')}))
def _split_generators(self, dl_manager):
ds = datasets.load_dataset(BASE_DATASET)['combined']
ds = ds.map(setexe, batched=False)
if self.config.name == "combined":
return [
datasets.SplitGenerator(
name="combined",
gen_kwargs={
"ds": ds,
},
),
]
elif self.config.name == "byrow":
ds = ds.train_test_split(test_size=0.1, seed=42)
#print(ds)
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"ds": ds['train'],
},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"ds": ds['test'],
},
),
]
elif self.config.name == "byfuncname":
unique_names = ds.unique('Name')
nameds = datasets.Dataset.from_dict({'Name': unique_names})
name_split = nameds.train_test_split(test_size=0.1, seed=42)
#print(name_split)
train_name = name_split['train']['Name']
test_name = name_split['test']['Name']
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"ds": ds.filter(lambda r: r['Name'] in train_name),
},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"ds": ds.filter(lambda r: r['Name'] in test_name),
},
),
]
elif self.config.name in ["bylibrary", "bylibrarydedup", "bylibrarydedupall"]:
# A function (name) is a library function if it appears in more than one Exename
# this is (('func', 'oo.exe'): 123)
testcount = set(zip(ds['Name'], zip(ds['Binary'], ds['Exename'])))
# sorted pairs by function name
testcount = sorted(testcount, key=lambda x: x[0])
# group by function name
grouped = itertools.groupby(testcount, lambda t: t[0])
# Move the function name to the key
grouped = {k: [b for _,b in g] for k, g in grouped}
def appears_in_single_exe(tuples):
return len({x[1] for x in tuples}) == 1
library_func_names = {f for f, exes in grouped.items() if not appears_in_single_exe(exes)}
# Exename
# v
library_func_names_dedup = {(f, exes[0][1]) for f, exes in grouped.items() if not appears_in_single_exe(exes)}
# Binary
# v
library_func_names_dedup_all = {(f, exes[0][0]) for f, exes in grouped.items() if not appears_in_single_exe(exes)}
nonlibrary_func_names = {f for f, exes in grouped.items() if appears_in_single_exe(exes)}
train_filter_fun = None
if self.config.name == "bylibrary":
train_filter_fun = lambda r: r['Name'] in library_func_names
elif self.config.name == "bylibrarydedup":
train_filter_fun = lambda r: (r['Name'], r['Exename']) in library_func_names_dedup
elif self.config.name == "bylibrarydedupall":
train_filter_fun = lambda r: (r['Name'], r['Binary']) in library_func_names_dedup_all
else:
assert False, "Invalid configuration"
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"ds": ds.filter(train_filter_fun),
},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"ds": ds.filter(lambda r: r['Name'] in nonlibrary_func_names),
},
),
]
else:
assert False
def _generate_tables(self, ds):
# Converting to pandas is silly, but the old version of datasets doesn't
# seem to have a way to convert to Arrow?
for i, batch in enumerate(ds.to_pandas(batched=True)):
yield i, pa.Table.from_pandas(batch)
|