File size: 4,140 Bytes
6b7123c 8df4562 6b7123c 413eb4e cf393d0 413eb4e cf393d0 413eb4e cf393d0 413eb4e 6b7123c 413eb4e 0e1cf95 413eb4e 0e1cf95 413eb4e 0e1cf95 413eb4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: gfdl
language:
- it
- es
- sc
- en
tags:
- sqlite
- wikipedia
- wikilite
- eja
pretty_name: wikilite
---
# Processed Wikipedia SQLite Databases for Wikilite
This dataset provides pre-processed SQLite databases of Wikipedia articles for use with the [Wikilite](https://github.com/eja/wikilite) tool. These databases allow you to quickly and efficiently search and access Wikipedia content offline using Wikilite's lexical and semantic search capabilities.
## Supported Languages
Currently, the dataset includes databases for the following languages:
* **Sardinian (sc)**
* **Italian (it)**
* **Spanish (es)**
* **English (en)**
More languages may be added in the future.
## Dataset Structure
Each language is stored as a separate compressed file (`.db.gz`) within the dataset. For example:
* `it.db.gz` - Italian Wikipedia database
* `sc.db.gz` - Sardinian Wikipedia database
* `es.db.gz` - Spanish Wikipedia database
* `en.db.gz` - English Wikipedia database
## How to Use this Dataset
1. **Download the Desired Database:** Choose the database for the language you want to use and download the corresponding `.db.gz` file.
2. **Decompress the Database:** Use a tool like `gunzip` to decompress the downloaded file. For example, on Linux or macOS, you can run the following command in your terminal:
```bash
gunzip it.db.gz
```
This will create the decompressed database file (`it.db` in the example above).
3. **Install Wikilite**: Follow the instructions on the [Wikilite github repo](https://github.com/eja/wikilite) to clone the repository and build the binary, or download a precompiled binary for your OS from [Wikilite Releases](https://github.com/eja/wikilite/releases/latest).
4. **Run Wikilite:** Navigate to the directory where you extracted the database and where you have the compiled `wikilite` binary. Use the `wikilite` command with the appropriate options. For example, to start the web interface for the Italian database, use:
```bash
./wikilite --db it.db --web
```
This will start a local web server allowing you to browse and search the Wikipedia content.
**Command-line Usage:** Alternatively, you can search the database directly from the command line:
```bash
./wikilite --db it.db --cli
```
5. **Access the Web Interface:** If you started the web server, open a web browser and navigate to `http://localhost:35248` to access the web interface.
## About Wikilite
[Wikilite](https://github.com/eja/wikilite) is a tool that provides offline access to Wikipedia content, featuring:
* **Fast and Flexible Lexical Searching:** Uses FTS5 (Full-Text Search 5) for efficient keyword-based searching.
* **Enhanced Semantic Search:** Integrates semantic search capabilities, allowing you to find information based on meaning rather than just keywords.
* **Offline Access:** Enables access to Wikipedia articles without an internet connection.
* **Command-Line Interface (CLI):** Allows direct searching from the terminal.
* **Web Interface (Optional):** Provides a user-friendly way to browse and search content.
### Semantic Search Details
Wikilite leverages text embeddings for its optional semantic search. This allows you to find results even if your query does not match keywords directly, handling cases like:
* Typos in your search query.
* Different wordings to express the same concept.
* The article uses synonyms or related terms.
**Note:** To enable semantic search, you'll need a local GGUF model or an OpenAI-compatible remote server and configure Wikilite accordingly. See the Wikilite GitHub repository for more details.
## Contributing
If you would like to contribute databases for additional languages, please feel free to submit a pull request.
## Acknowledgments
* [Wikipedia](https://www.wikipedia.org/): For providing the valuable data.
* [SQLite](https://www.sqlite.org/): For the robust database engine.
* [Ollama](https://ollama.ai) For enabling the internal generation of embeddings.
* [Wikilite](https://github.com/eja/wikilite): For making this project possible. |