File size: 4,140 Bytes
6b7123c
 
 
 
 
 
8df4562
6b7123c
 
 
 
 
 
 
413eb4e
 
 
 
 
 
 
 
 
 
 
cf393d0
413eb4e
 
 
 
 
 
 
 
 
 
cf393d0
413eb4e
 
 
 
 
 
 
 
 
 
 
 
cf393d0
413eb4e
 
 
 
 
 
 
 
 
 
 
 
6b7123c
413eb4e
 
 
 
 
 
 
 
 
0e1cf95
413eb4e
 
 
 
 
 
 
 
 
 
 
 
0e1cf95
413eb4e
 
 
 
 
 
 
 
 
0e1cf95
413eb4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: gfdl
language:
- it
- es
- sc
- en
tags:
- sqlite
- wikipedia
- wikilite
- eja
pretty_name: wikilite
---
# Processed Wikipedia SQLite Databases for Wikilite

This dataset provides pre-processed SQLite databases of Wikipedia articles for use with the [Wikilite](https://github.com/eja/wikilite) tool. These databases allow you to quickly and efficiently search and access Wikipedia content offline using Wikilite's lexical and semantic search capabilities.

## Supported Languages

Currently, the dataset includes databases for the following languages:

*   **Sardinian (sc)**
*   **Italian (it)**
*   **Spanish (es)**
*   **English (en)**

More languages may be added in the future.

## Dataset Structure

Each language is stored as a separate compressed file (`.db.gz`) within the dataset. For example:

*   `it.db.gz` - Italian Wikipedia database
*   `sc.db.gz` - Sardinian Wikipedia database
*   `es.db.gz` - Spanish Wikipedia database
*   `en.db.gz` - English Wikipedia database

## How to Use this Dataset

1.  **Download the Desired Database:** Choose the database for the language you want to use and download the corresponding `.db.gz` file.

2.  **Decompress the Database:** Use a tool like `gunzip` to decompress the downloaded file. For example, on Linux or macOS, you can run the following command in your terminal:

    ```bash
    gunzip it.db.gz
    ```
    This will create the decompressed database file (`it.db` in the example above).

3. **Install Wikilite**: Follow the instructions on the [Wikilite github repo](https://github.com/eja/wikilite) to clone the repository and build the binary, or download a precompiled binary for your OS from  [Wikilite Releases](https://github.com/eja/wikilite/releases/latest).

4.  **Run Wikilite:**  Navigate to the directory where you extracted the database and where you have the compiled `wikilite` binary. Use the `wikilite` command with the appropriate options. For example, to start the web interface for the Italian database, use:

    ```bash
    ./wikilite --db it.db --web
    ```

    This will start a local web server allowing you to browse and search the Wikipedia content.

    **Command-line Usage:** Alternatively, you can search the database directly from the command line:

    ```bash
    ./wikilite --db it.db --cli
    ```

5.  **Access the Web Interface:** If you started the web server, open a web browser and navigate to `http://localhost:35248` to access the web interface.

## About Wikilite

[Wikilite](https://github.com/eja/wikilite) is a tool that provides offline access to Wikipedia content, featuring:

*   **Fast and Flexible Lexical Searching:** Uses FTS5 (Full-Text Search 5) for efficient keyword-based searching.
*   **Enhanced Semantic Search:** Integrates semantic search capabilities, allowing you to find information based on meaning rather than just keywords.
*   **Offline Access:** Enables access to Wikipedia articles without an internet connection.
*   **Command-Line Interface (CLI):** Allows direct searching from the terminal.
*   **Web Interface (Optional):** Provides a user-friendly way to browse and search content.

### Semantic Search Details

Wikilite leverages text embeddings for its optional semantic search. This allows you to find results even if your query does not match keywords directly, handling cases like:

*   Typos in your search query.
*   Different wordings to express the same concept.
*   The article uses synonyms or related terms.

**Note:** To enable semantic search, you'll need a local GGUF model or an OpenAI-compatible remote server and configure Wikilite accordingly. See the Wikilite GitHub repository for more details.

## Contributing

If you would like to contribute databases for additional languages, please feel free to submit a pull request.

## Acknowledgments

*   [Wikipedia](https://www.wikipedia.org/): For providing the valuable data.
*   [SQLite](https://www.sqlite.org/): For the robust database engine.
*   [Ollama](https://ollama.ai) For enabling the internal generation of embeddings.
*   [Wikilite](https://github.com/eja/wikilite): For making this project possible.