File size: 7,634 Bytes
8c5499d
6884213
 
 
 
 
 
 
 
 
 
8c5499d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6884213
 
8c5499d
 
6884213
8c5499d
 
6884213
8c5499d
 
6884213
8c5499d
6884213
 
8c5499d
 
 
 
 
 
 
 
 
 
6e0e0a3
 
 
 
 
d2ed991
 
 
 
 
 
 
 
 
74de67d
d2ed991
 
 
74de67d
d2ed991
 
 
74de67d
d2ed991
 
 
 
 
6e0e0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74de67d
 
6e0e0a3
 
 
 
 
 
 
 
 
 
 
 
 
74de67d
6e0e0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
language:
- en
license: other
size_categories:
- 1K<n<10K
task_categories:
- image-classification
- object-detection
paperswithcode_id: rvl-cdip
pretty_name: RVL-CDIP Mini
dataset_info:
  features:
  - name: image
    dtype: image
  - name: width
    dtype: int64
  - name: height
    dtype: int64
  - name: category
    dtype: string
  - name: ocr_words
    sequence: string
  - name: word_boxes
    sequence:
      sequence: int64
  - name: ocr_paragraphs
    sequence: string
  - name: paragraph_boxes
    sequence:
      sequence: int64
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 353331082.8
    num_examples: 3200
  - name: validation
    num_bytes: 43966539.0
    num_examples: 400
  - name: test
    num_bytes: 42947141.0
    num_examples: 400
  download_size: 424911398
  dataset_size: 440244762.8
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---

# Dataset Card for RVL-CDIP-MINI

**This dataset is a subset (1%) of the original [aharley/rvl_cdip](https://huggingface.co./datasets/aharley/rvl_cdip) merged with the corresponding annotations from [jordyvl/rvl_cdip_easyocr](https://huggingface.co./datasets/jordyvl/rvl_cdip_easyocr).**

You can easily and quickly load it:

```python
dataset = load_dataset("dvgodoy/rvl_cdip_mini")
```

```
DatasetDict({
    train: Dataset({
        features: ['image', 'width', 'height', 'category', 'ocr_words', 'word_boxes', 'ocr_paragraphs', 'paragraph_boxes', 'label'],
        num_rows: 3200
    })
    validation: Dataset({
        features: ['image', 'width', 'height', 'category', 'ocr_words', 'word_boxes', 'ocr_paragraphs', 'paragraph_boxes', 'label'],
        num_rows: 400
    })
    test: Dataset({
        features: ['image', 'width', 'height', 'category', 'ocr_words', 'word_boxes', 'ocr_paragraphs', 'paragraph_boxes', 'label'],
        num_rows: 400
    })
})
```

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [The RVL-CDIP Dataset](https://www.cs.cmu.edu/~aharley/rvl-cdip/)
- **Repository:**
- **Paper:** [Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval](https://arxiv.org/abs/1502.07058)
- **Leaderboard:** [RVL-CDIP leaderboard](https://paperswithcode.com/dataset/rvl-cdip)
- **Point of Contact:** [Adam W. Harley](mailto:[email protected])

### Dataset Summary

The original RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset consists of 400,000 grayscale images in 16 classes, with 25,000 images per class. There are 320,000 training images, 40,000 validation images, and 40,000 test images. The images are sized so their largest dimension does not exceed 1000 pixels.

**This "mini" version contains only the first 4,000 images from the original dataset: 3,200 training images, 400 validation images, and 400 test images.**

### Supported Tasks and Leaderboards

- `image-classification`: The goal of this task is to classify a given document into one of 16 classes representing document types (letter, form, etc.). The leaderboard for this task is available [here](https://paperswithcode.com/sota/document-image-classification-on-rvl-cdip).

### Languages

All the classes and documents use English as their primary language.

## Dataset Structure

### Data Instances

A sample from the training set is provided below :
```
{
    'image': <PIL.TiffImagePlugin.TiffImageFile image mode=L size=754x1000 at 0x7F9A5E92CA90>,
    'width': 754,
    'height': 1000,
    'category': 'advertisement',
    'ocr_words': [...],
    'word_boxes': [[...]],
    'ocr_paragraphs': [...],
    'paragraph_boxes': [[...]],
    'label': 4
}
```

### Data Fields

- `image`: A `PIL.Image.Image` object containing a document.
- `width`: image's width.
- `height`: image's height.
- `category`: class label.
- `ocr_words`: list of OCRed words.
- `word_boxes`: list of box coordinates in `(xmin, ymin, xmax, ymax)` format (Pascal VOC).
- `ocr_paragraphs`: list of OCRed paragraphs.
- `paragraph_boxes`: list of box coordinates in `(xmin, ymin, xmax, ymax)` format (Pascal VOC).
- `label`: an `int` classification label.

<details>
  <summary>Class Label Mappings</summary>

```json
{
  "0": "letter",
  "1": "form",
  "2": "email",
  "3": "handwritten",
  "4": "advertisement",
  "5": "scientific report",
  "6": "scientific publication",
  "7": "specification",
  "8": "file folder",
  "9": "news article",
  "10": "budget",
  "11": "invoice",
  "12": "presentation",
  "13": "questionnaire",
  "14": "resume",
  "15": "memo"
}
```

</details>

### Data Splits

|   |train|test|validation|
|----------|----:|----:|---------:|
|# of examples|3200|400|400|

The dataset was split in proportions similar to those of ImageNet.
- 3200 images were used for training,
- 400 images for validation, and 
- 400 images for testing. 

## Dataset Creation

### Curation Rationale

From the paper:
> This work makes available a new labelled subset of the IIT-CDIP collection, containing 400,000
document images across 16 categories, useful for training new CNNs for document analysis.

### Source Data

#### Initial Data Collection and Normalization

The same as in the IIT-CDIP collection.

#### Who are the source language producers?

The same as in the IIT-CDIP collection.

### Annotations

#### Annotation process

The same as in the IIT-CDIP collection.

#### Who are the annotators?

The same as in the IIT-CDIP collection.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

The dataset was curated by the authors - Adam W. Harley, Alex Ufkes, and Konstantinos G. Derpanis.

### Licensing Information

RVL-CDIP is a subset of IIT-CDIP, which came from the [Legacy Tobacco Document Library](https://www.industrydocuments.ucsf.edu/tobacco/), for which license information can be found [here](https://www.industrydocuments.ucsf.edu/help/copyright/).

### Citation Information

```bibtex
@inproceedings{harley2015icdar,
    title = {Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval},
    author = {Adam W Harley and Alex Ufkes and Konstantinos G Derpanis},
    booktitle = {International Conference on Document Analysis and Recognition ({ICDAR})}},
    year = {2015}
}
```

### Contributions

Thanks to [@dnaveenr](https://github.com/dnaveenr) for adding this dataset.