File size: 7,745 Bytes
68bd7d5
f930c74
30fcaf0
 
 
 
 
 
 
 
 
 
 
f930c74
30fcaf0
 
 
f930c74
 
 
 
 
 
cb09e62
 
 
 
 
 
4356f46
 
 
 
 
 
f930c74
 
 
 
 
 
d6b8ec1
 
 
 
 
 
b58ac28
 
 
 
 
 
9b69dea
 
 
 
 
 
f930c74
cb09e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4356f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b8ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f930c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b58ac28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b69dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68bd7d5
30fcaf0
 
 
 
 
 
 
 
 
d5cb38b
 
30fcaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9064e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
30fcaf0
b01fea6
 
 
 
30fcaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
language:
- eng
- afr
- nbl
- xho
- zul
- sot
- nso
- tsn
- ssw
- ven
- tso
license: cc-by-4.0
task_categories:
- sentence-similarity
- translation
pretty_name: The Vuk'uzenzele South African Multilingual Corpus
tags:
- multilingual
- government
arxiv: 2303.0375
configs:
- config_name: afr-tsn
  data_files:
  - split: train
    path: afr-tsn/train-*
  - split: test
    path: afr-tsn/test-*
- config_name: afr-xho
  data_files:
  - split: train
    path: afr-xho/train-*
  - split: test
    path: afr-xho/test-*
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
- config_name: nbl-nso
  data_files:
  - split: train
    path: nbl-nso/train-*
  - split: test
    path: nbl-nso/test-*
- config_name: tsn-xho
  data_files:
  - split: train
    path: tsn-xho/train-*
  - split: test
    path: tsn-xho/test-*
- config_name: tso-ven
  data_files:
  - split: train
    path: tso-ven/train-*
  - split: test
    path: tso-ven/test-*
dataset_info:
- config_name: afr-tsn
  features:
  - name: afr
    dtype: string
  - name: tsn
    dtype: string
  - name: score
    dtype: float64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 1153686
    num_examples: 3235
  - name: test
    num_bytes: 289346
    num_examples: 809
  download_size: 912706
  dataset_size: 1443032
- config_name: afr-xho
  features:
  - name: afr
    dtype: string
  - name: xho
    dtype: string
  - name: score
    dtype: float64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 1124390
    num_examples: 3541
  - name: test
    num_bytes: 277280
    num_examples: 886
  download_size: 937590
  dataset_size: 1401670
- config_name: default
  features:
  - name: nbl
    dtype: string
  - name: nso
    dtype: string
  - name: score
    dtype: float64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 128131
    num_examples: 315
  - name: test
    num_bytes: 31826
    num_examples: 79
  download_size: 113394
  dataset_size: 159957
- config_name: nbl-nso
  features:
  - name: nbl
    dtype: string
  - name: nso
    dtype: string
  - name: score
    dtype: float64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 128131
    num_examples: 315
  - name: test
    num_bytes: 31826
    num_examples: 79
  download_size: 113394
  dataset_size: 159957
- config_name: tsn-xho
  features:
  - name: tsn
    dtype: string
  - name: xho
    dtype: string
  - name: score
    dtype: float64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 1248717
    num_examples: 3416
  - name: test
    num_bytes: 306197
    num_examples: 854
  download_size: 983260
  dataset_size: 1554914
- config_name: tso-ven
  features:
  - name: tso
    dtype: string
  - name: ven
    dtype: string
  - name: score
    dtype: float64
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 197128
    num_examples: 428
  - name: test
    num_bytes: 45408
    num_examples: 108
  download_size: 158793
  dataset_size: 242536
---

# The Vuk'uzenzele South African Multilingual Corpus

Github: [https://github.com/dsfsi/vukuzenzele-nlp/](https://github.com/dsfsi/vukuzenzele-nlp/)

Zenodo: [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7598539.svg)](https://doi.org/10.5281/zenodo.7598539)

Arxiv Preprint: [![arXiv](https://img.shields.io/badge/arXiv-2303.03750-b31b1b.svg)](https://arxiv.org/abs/2303.03750)

Give Feedback 📑: [DSFSI Resource Feedback Form](https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/formResponse)

# About
The dataset was obtained from the South African government magazine Vuk'uzenzele, created by the [Government Communication and Information System (GCIS)](https://www.gcis.gov.za/). 
The original raw PDFS were obtatined from the [Vuk'uzenzele website](https://www.vukuzenzele.gov.za/).

The datasets contain government magazine editions in 11 languages, namely:

|  Language  | Code  |  Language  | Code |
|------------|-------|------------|-------|
| English    | (eng) | Sepedi     | (sep) |
| Afrikaans  | (afr) | Setswana   | (tsn) |
| isiNdebele | (nbl) | Siswati    | (ssw) |
| isiXhosa   | (xho) | Tshivenda  | (ven) |
| isiZulu    | (zul) | Xitstonga  | (tso) |
| Sesotho    | (nso) |

## Available pairings

The alignment direction is bidrectional, i.e. xho-zul is zul-xho

afr-eng; afr-nbl; afr-nso; afr-sot; afr-ssw; afr-tsn; afr-tso; afr-ven; afr-xho; afr-zul  
eng-nbl; eng-nso; eng-sot ;eng-ssw; eng-tsn; eng-tso; eng-ven; eng-xho; eng-zul  
nbl-nso; nbl-sot; nbl-ssw; nbl-tsn; nbl-tso; nbl-ven; nbl-xho; nbl-zul  
nso-sot; nso-ssw; nso-tsn; nso-tso; nso-ven; nso-xho; nso-zul  
sot-ssw; sot-tsn; sot-tso; sot-ven; sot-xho; sot-zul  
ssw-tsn; ssw-tso; ssw-ven; ssw-xho; ssw-zul  
tsn-tso; tsn-ven; tsn-xho; tsn-zul  
tso-ven; tso-xho; tso-zul  
ven-xho; ven-zul  
xho-zul  

# Disclaimer

This dataset contains machine-readable data extracted from PDF documents, from https://www.vukuzenzele.gov.za/, provided by the Government Communication Information System (GCIS). While efforts were made to ensure the accuracy and completeness of this data, there may be errors or discrepancies between the original publications and this dataset. No warranties, guarantees or representations are given in relation to the information contained in the dataset. The members of the Data Science for Societal Impact Research Group bear no responsibility and/or liability for any such errors or discrepancies in this dataset. The Government Communication Information System (GCIS) bears no responsibility and/or liability for any such errors or discrepancies in this dataset. It is recommended that users verify all information contained herein before making decisions based upon this information.

# Datasets
The datasets consist of pairwise sentence aligned data. There are 55 distinct datasets of paired sentences.
The data is obtained by comparing [LASER](https://github.com/facebookresearch/LASER) embeddings of sentence tokens between 2 languages. If the similarity is high, the sentences are deemed semantic equivalents of one another and the observation is outputted. 

Naming convention:  
The naming structure of the pairwise_sentence_aligned folder is `aligned-{src_lang_code}-{tgt_lang_code}.csv`.  
For example, `aligned-afr-zul.csv` is the aligned sentences between Afrikaans and isiZulu. 

The data is in .csv format and the columns are `src_text`,`tgt_text`,`cosine_score` where:  
- `src_text` is the source sentence
- `tgt_text` is the target sentence
- `cosine_score` is the cosine similarity score obtained by comparing the sentence embeddings, it ranges from 0 to 1

**Note:** The notion of source (src) and target (tgt) are only necessary for distinction between the languages used in the aligned pair, as the sentence semantics should be bidirectional. (hallo <-> sawubona)

# Citation
Vukosi Marivate, Andani Madodonga, Daniel Njini, Richard Lastrucci, Isheanesu Dzingirai, Jenalea Rajab. **The Vuk'uzenzele South African Multilingual Corpus**, 2023

> @dataset{marivate_vukosi_2023_7598540,
  author       = {Marivate, Vukosi and
                  Njini, Daniel and
                  Madodonga, Andani and
                  Lastrucci, Richard and
                  Dzingirai, Isheanesu
                  Rajab, Jenalea},
  title        = {The Vuk'uzenzele South African Multilingual Corpus},
  month        = feb,
  year         = 2023,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7598539},
  url          = {https://doi.org/10.5281/zenodo.7598539}
}

### Licence
* Licence for Data - [CC 4.0 BY](LICENSE.md)