sprsenpai commited on
Commit
3ca6996
·
verified ·
1 Parent(s): 040e1f5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -59
README.md CHANGED
@@ -9,65 +9,105 @@ task_categories:
9
 
10
  As part of the ITANONG project's 10 billion-token Tagalog dataset, we have introduced a collection of pre-trained embedding models. These models were trained using the Formal text dataset from the renowned corpus which has been thoroughly detailed in our paper. Details of the embedding models can be seen below:
11
 
12
- $$
13
- \usepackage{multirow}
14
- \begin{table}[h]
15
- \centering
16
- \begin{tabular}{|c|c|c|c|}
17
- \hline
18
- Embedding Technique & Variant & Model File Format & Embedding Size \\ \hline
19
- \multirow{24}{*}{Word2Vec} & \multirow{12}{*}{Skipgram} & \multirow{6}{*}{.bin} & 20 \\ \cline{4-4}
20
- & & & 30 \\ \cline{4-4}
21
- & & & 50 \\ \cline{4-4}
22
- & & & 100 \\ \cline{4-4}
23
- & & & 200 \\ \cline{4-4}
24
- & & & 300 \\ \cline{3-4}
25
- & & \multirow{6}{*}{.txt} & 20 \\ \cline{4-4}
26
- & & & 30 \\ \cline{4-4}
27
- & & & 50 \\ \cline{4-4}
28
- & & & 100 \\ \cline{4-4}
29
- & & & 200 \\ \cline{4-4}
30
- & & & 300 \\ \cline{2-4}
31
- & \multirow{12}{*}{CBOW} & \multirow{6}{*}{.bin} & 20 \\ \cline{4-4}
32
- & & & 30 \\ \cline{4-4}
33
- & & & 50 \\ \cline{4-4}
34
- & & & 100 \\ \cline{4-4}
35
- & & & 200 \\ \cline{4-4}
36
- & & & 300 \\ \cline{3-4}
37
- & & \multirow{6}{*}{.txt} & 20 \\ \cline{4-4}
38
- & & & 30 \\ \cline{4-4}
39
- & & & 50 \\ \cline{4-4}
40
- & & & 100 \\ \cline{4-4}
41
- & & & 200 \\ \cline{4-4}
42
- & & & 300 \\ \hline
43
- \multirow{24}{*}{FastText} & \multirow{12}{*}{Skipgram} & \multirow{6}{*}{.bin} & 20 \\ \cline{4-4}
44
- & & & 30 \\ \cline{4-4}
45
- & & & 50 \\ \cline{4-4}
46
- & & & 100 \\ \cline{4-4}
47
- & & & 200 \\ \cline{4-4}
48
- & & & 300 \\ \cline{3-4}
49
- & & \multirow{6}{*}{.txt} & 20 \\ \cline{4-4}
50
- & & & 30 \\ \cline{4-4}
51
- & & & 50 \\ \cline{4-4}
52
- & & & 100 \\ \cline{4-4}
53
- & & & 200 \\ \cline{4-4}
54
- & & & 300 \\ \cline{2-4}
55
- & \multirow{12}{*}{CBOW} & \multirow{6}{*}{.bin} & 20 \\ \cline{4-4}
56
- & & & 30 \\ \cline{4-4}
57
- & & & 50 \\ \cline{4-4}
58
- & & & 100 \\ \cline{4-4}
59
- & & & 200 \\ \cline{4-4}
60
- & & & 300 \\ \cline{3-4}
61
- & & \multirow{6}{*}{.txt} & 20 \\ \cline{4-4}
62
- & & & 30 \\ \cline{4-4}
63
- & & & 50 \\ \cline{4-4}
64
- & & & 100 \\ \cline{4-4}
65
- & & & 200 \\ \cline{4-4}
66
- & & & 300 \\ \hline
67
- \end{tabular}
68
- \end{table}
69
-
70
- $$
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  ## Training Details
73
  This model was trained using an Nvidia V100-32GB GPU on DOST-ASTI Computing and Archiving Research Environment (COARE) - https://asti.dost.gov.ph/projects/coare/
 
9
 
10
  As part of the ITANONG project's 10 billion-token Tagalog dataset, we have introduced a collection of pre-trained embedding models. These models were trained using the Formal text dataset from the renowned corpus which has been thoroughly detailed in our paper. Details of the embedding models can be seen below:
11
 
12
+ +---------------------+----------+-------------------+----------------+
13
+ | Embedding Technique | Variant | Model File Format | Embedding Size |
14
+ +---------------------+----------+-------------------+----------------+
15
+ | Word2Vec | Skipgram | .bin | 20 |
16
+ | | | +----------------+
17
+ | | | | 30 |
18
+ | | | +----------------+
19
+ | | | | 50 |
20
+ | | | +----------------+
21
+ | | | | 100 |
22
+ | | | +----------------+
23
+ | | | | 200 |
24
+ | | | +----------------+
25
+ | | | | 300 |
26
+ | | +-------------------+----------------+
27
+ | | | .txt | 20 |
28
+ | | | +----------------+
29
+ | | | | 30 |
30
+ | | | +----------------+
31
+ | | | | 50 |
32
+ | | | +----------------+
33
+ | | | | 100 |
34
+ | | | +----------------+
35
+ | | | | 200 |
36
+ | | | +----------------+
37
+ | | | | 300 |
38
+ | +----------+-------------------+----------------+
39
+ | | CBOW | .bin | 20 |
40
+ | | | +----------------+
41
+ | | | | 30 |
42
+ | | | +----------------+
43
+ | | | | 50 |
44
+ | | | +----------------+
45
+ | | | | 100 |
46
+ | | | +----------------+
47
+ | | | | 200 |
48
+ | | | +----------------+
49
+ | | | | 300 |
50
+ | | +-------------------+----------------+
51
+ | | | .txt | 20 |
52
+ | | | +----------------+
53
+ | | | | 30 |
54
+ | | | +----------------+
55
+ | | | | 50 |
56
+ | | | +----------------+
57
+ | | | | 100 |
58
+ | | | +----------------+
59
+ | | | | 200 |
60
+ | | | +----------------+
61
+ | | | | 300 |
62
+ +---------------------+----------+-------------------+----------------+
63
+ | FastText | Skipgram | .bin | 20 |
64
+ | | | +----------------+
65
+ | | | | 30 |
66
+ | | | +----------------+
67
+ | | | | 50 |
68
+ | | | +----------------+
69
+ | | | | 100 |
70
+ | | | +----------------+
71
+ | | | | 200 |
72
+ | | | +----------------+
73
+ | | | | 300 |
74
+ | | +-------------------+----------------+
75
+ | | | .txt | 20 |
76
+ | | | +----------------+
77
+ | | | | 30 |
78
+ | | | +----------------+
79
+ | | | | 50 |
80
+ | | | +----------------+
81
+ | | | | 100 |
82
+ | | | +----------------+
83
+ | | | | 200 |
84
+ | | | +----------------+
85
+ | | | | 300 |
86
+ | +----------+-------------------+----------------+
87
+ | | CBOW | .bin | 20 |
88
+ | | | +----------------+
89
+ | | | | 30 |
90
+ | | | +----------------+
91
+ | | | | 50 |
92
+ | | | +----------------+
93
+ | | | | 100 |
94
+ | | | +----------------+
95
+ | | | | 200 |
96
+ | | | +----------------+
97
+ | | | | 300 |
98
+ | | +-------------------+----------------+
99
+ | | | .txt | 20 |
100
+ | | | +----------------+
101
+ | | | | 30 |
102
+ | | | +----------------+
103
+ | | | | 50 |
104
+ | | | +----------------+
105
+ | | | | 100 |
106
+ | | | +----------------+
107
+ | | | | 200 |
108
+ | | | +----------------+
109
+ | | | | 300 |
110
+ +---------------------+----------+-------------------+----------------+
111
 
112
  ## Training Details
113
  This model was trained using an Nvidia V100-32GB GPU on DOST-ASTI Computing and Archiving Research Environment (COARE) - https://asti.dost.gov.ph/projects/coare/