import re import json def clean_text_file(input_file): """ Cleans the text file by: - Removing lines that start with 'BOOK' or contain only numbers, - Substituting two leading spaces with a single tab, - Normalizing all leading whitespace to no more than two tabs of indentation, - Splitting the text into chunks separated by at least 3 newlines. """ with open(input_file, "r", encoding="utf-8") as infile: lines = infile.readlines() cleaned_lines = [] for line in lines: stripped_line = line.strip() if stripped_line.startswith("BOOK") or stripped_line.isdigit(): continue line = re.sub(r"^ ", "\t", line) line = re.sub(r"^[\t ]+", normalize_whitespace, line) # Remove a single leading tab if present if line.startswith("\t"): line = line[1:] cleaned_lines.append(line) cleaned_text = "".join(cleaned_lines) poems = [chunk.strip() for chunk in cleaned_text.split("\n\n\n") if chunk.strip()] # in each poem convert any double newlines to single newlines poems = [re.sub(r"\n\n", "\n", poem) for poem in poems] return poems def normalize_whitespace(match): whitespace = match.group(0).replace("\t", " ") tab_count = len(whitespace) // 2 return "\t" * min(tab_count, 2) def create_training_data(poems, max_lines=7): training_pairs = [] for poem in poems: lines = poem.split("\n") for i in range(len(lines) - 1): prompt = lines[i] continuation = "\n".join(lines[i + 1:i + 1 + max_lines]) if continuation.strip(): # Skip empty continuations training_pairs.append({ "input": prompt, "output": continuation }) return training_pairs # Example usage poems = clean_text_file("leaves-of-grass-original.txt") training_pairs = create_training_data(poems, max_lines=10) print(f"Number of training pairs: {len(training_pairs)}") with open("train.json", "w", encoding="utf-8") as outfile: json.dump(training_pairs, outfile, indent=4, ensure_ascii=False)