The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code: DatasetGenerationError Exception: TypeError Message: Couldn't cast array of type struct<tts_vocoder1: struct<MCD: double>, tts_vocoder2: struct<Log F0 RMSE: double>, tts_vocoder3: struct<UTMOS: double>, tts_vocoder4: struct<Bitrate: double>, tts_vocoder5: struct<Sample Rate: int64>, tts_vocoder6: struct<Rank: int64>> to {'tts_vocoder1': {'MCD': Value(dtype='float64', id=None)}, 'tts_vocoder2': {'Log F0 RMSE': Value(dtype='float64', id=None)}, 'tts_vocoder3': {'UTMOS': Value(dtype='float64', id=None)}, 'tts_vocoder4': {'Bitrate': Value(dtype='float64', id=None)}, 'tts_vocoder5': {'Sample Rate': Value(dtype='int64', id=None)}, 'tts_vocoder6': {'Rank': Value(dtype='int64', id=None)}, 'tts_vocoder7': {'LowSR-Rank': Value(dtype='int64', id=None)}, 'tts_vocoder8': {'HighSR-Rank': Value(dtype='int64', id=None)}} Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2122, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{_short_str(array.type)}\nto\n{_short_str(feature)}") TypeError: Couldn't cast array of type struct<tts_vocoder1: struct<MCD: double>, tts_vocoder2: struct<Log F0 RMSE: double>, tts_vocoder3: struct<UTMOS: double>, tts_vocoder4: struct<Bitrate: double>, tts_vocoder5: struct<Sample Rate: int64>, tts_vocoder6: struct<Rank: int64>> to {'tts_vocoder1': {'MCD': Value(dtype='float64', id=None)}, 'tts_vocoder2': {'Log F0 RMSE': Value(dtype='float64', id=None)}, 'tts_vocoder3': {'UTMOS': Value(dtype='float64', id=None)}, 'tts_vocoder4': {'Bitrate': Value(dtype='float64', id=None)}, 'tts_vocoder5': {'Sample Rate': Value(dtype='int64', id=None)}, 'tts_vocoder6': {'Rank': Value(dtype='int64', id=None)}, 'tts_vocoder7': {'LowSR-Rank': Value(dtype='int64', id=None)}, 'tts_vocoder8': {'HighSR-Rank': Value(dtype='int64', id=None)}} The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
config
dict | results
dict |
---|---|
{
"model_dtype": "torch.float16",
"model_name": "CMYueTing/ConHifiVocoder"
} | {
"tts_vocoder1": {
"MCD": 7.06
},
"tts_vocoder2": {
"Log F0 RMSE": 0.28
},
"tts_vocoder3": {
"UTMOS": 3.2993
},
"tts_vocoder4": {
"Bitrate": 547
},
"tts_vocoder5": {
"Sample Rate": 16000
},
"tts_vocoder6": {
"Rank": 15
},
"tts_vocoder7": {
"LowSR-Rank": 10
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "CMYueTing/YueTingVocoder"
} | {
"tts_vocoder1": {
"MCD": 6.66
},
"tts_vocoder2": {
"Log F0 RMSE": 0.24
},
"tts_vocoder3": {
"UTMOS": 3.5101
},
"tts_vocoder4": {
"Bitrate": 547
},
"tts_vocoder5": {
"Sample Rate": 16000
},
"tts_vocoder6": {
"Rank": 9
},
"tts_vocoder7": {
"LowSR-Rank": 5
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "CMYueTing/YueTingVocoder_2"
} | {
"tts_vocoder1": {
"MCD": 6.2
},
"tts_vocoder2": {
"Log F0 RMSE": 0.23
},
"tts_vocoder3": {
"UTMOS": 3.5525
},
"tts_vocoder4": {
"Bitrate": 547
},
"tts_vocoder5": {
"Sample Rate": 16000
},
"tts_vocoder6": {
"Rank": 4
},
"tts_vocoder7": {
"LowSR-Rank": 3
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "CMYueTing/YueTingVocoder_3"
} | {
"tts_vocoder1": {
"MCD": 6.24
},
"tts_vocoder2": {
"Log F0 RMSE": 0.24
},
"tts_vocoder3": {
"UTMOS": 3.5945
},
"tts_vocoder4": {
"Bitrate": 547
},
"tts_vocoder5": {
"Sample Rate": 16000
},
"tts_vocoder6": {
"Rank": 1
},
"tts_vocoder7": {
"LowSR-Rank": 1
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "ICACS_Speech_Synthesis/MultiDAC"
} | {
"tts_vocoder1": {
"MCD": 3.61
},
"tts_vocoder2": {
"Log F0 RMSE": 0.16
},
"tts_vocoder3": {
"UTMOS": 3.5351
},
"tts_vocoder4": {
"Bitrate": 5077.6
},
"tts_vocoder5": {
"Sample Rate": 48000
},
"tts_vocoder6": {
"Rank": 7
},
"tts_vocoder7": {
"LowSR-Rank": -1
},
"tts_vocoder8": {
"HighSR-Rank": 4
}
} |
{
"model_dtype": "torch.float16",
"model_name": "ICACS_Speech_Synthesis/SingleDAC"
} | {
"tts_vocoder1": {
"MCD": 3.41
},
"tts_vocoder2": {
"Log F0 RMSE": 0.2
},
"tts_vocoder3": {
"UTMOS": 3.4107
},
"tts_vocoder4": {
"Bitrate": 503.6
},
"tts_vocoder5": {
"Sample Rate": 16000
},
"tts_vocoder6": {
"Rank": 14
},
"tts_vocoder7": {
"LowSR-Rank": 9
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "UTokyo-sarulab/βΊοΈ"
} | {
"tts_vocoder1": {
"MCD": 4.41
},
"tts_vocoder2": {
"Log F0 RMSE": 0.2
},
"tts_vocoder3": {
"UTMOS": 3.5671
},
"tts_vocoder4": {
"Bitrate": 1003.7
},
"tts_vocoder5": {
"Sample Rate": 24000
},
"tts_vocoder6": {
"Rank": 8
},
"tts_vocoder7": {
"LowSR-Rank": 4
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "UTokyo-sarulab/π"
} | {
"tts_vocoder1": {
"MCD": 4.81
},
"tts_vocoder2": {
"Log F0 RMSE": 0.21
},
"tts_vocoder3": {
"UTMOS": 3.5815
},
"tts_vocoder4": {
"Bitrate": 670.3
},
"tts_vocoder5": {
"Sample Rate": 16000
},
"tts_vocoder6": {
"Rank": 3
},
"tts_vocoder7": {
"LowSR-Rank": 2
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "UTokyo-sarulab/π"
} | {
"tts_vocoder1": {
"MCD": 5.17
},
"tts_vocoder2": {
"Log F0 RMSE": 0.22
},
"tts_vocoder3": {
"UTMOS": 3.286
},
"tts_vocoder4": {
"Bitrate": 501.7
},
"tts_vocoder5": {
"Sample Rate": 24000
},
"tts_vocoder6": {
"Rank": 16
},
"tts_vocoder7": {
"LowSR-Rank": 11
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "UTokyo-sarulab/π"
} | {
"tts_vocoder1": {
"MCD": 5.59
},
"tts_vocoder2": {
"Log F0 RMSE": 0.21
},
"tts_vocoder3": {
"UTMOS": 3.295
},
"tts_vocoder4": {
"Bitrate": 335.1
},
"tts_vocoder5": {
"Sample Rate": 16000
},
"tts_vocoder6": {
"Rank": 12
},
"tts_vocoder7": {
"LowSR-Rank": 7
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "UTokyo-sarulab/π―"
} | {
"tts_vocoder1": {
"MCD": 4.28
},
"tts_vocoder2": {
"Log F0 RMSE": 0.19
},
"tts_vocoder3": {
"UTMOS": 3.5431
},
"tts_vocoder4": {
"Bitrate": 1003.7
},
"tts_vocoder5": {
"Sample Rate": 24000
},
"tts_vocoder6": {
"Rank": 13
},
"tts_vocoder7": {
"LowSR-Rank": 8
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "baseline/discrete_hifigan"
} | {
"tts_vocoder1": {
"MCD": 7.19
},
"tts_vocoder2": {
"Log F0 RMSE": 0.42
},
"tts_vocoder3": {
"UTMOS": 2.3101
},
"tts_vocoder4": {
"Bitrate": 448.3
},
"tts_vocoder5": {
"Sample Rate": 16000
},
"tts_vocoder6": {
"Rank": 17
},
"tts_vocoder7": {
"LowSR-Rank": 12
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "BigPants/SystemA_48kHz"
} | {
"tts_vocoder1": {
"MCD": 3.86
},
"tts_vocoder2": {
"Log F0 RMSE": 0.21
},
"tts_vocoder3": {
"UTMOS": 2.95
},
"tts_vocoder4": {
"Bitrate": 6007.4
},
"tts_vocoder5": {
"Sample Rate": 48000
},
"tts_vocoder6": {
"Rank": 10
}
} |
{
"model_dtype": "torch.float16",
"model_name": "BigPants/SystemA_48kHz"
} | {
"tts_vocoder1": {
"MCD": 3.42
},
"tts_vocoder2": {
"Log F0 RMSE": 0.18
},
"tts_vocoder3": {
"UTMOS": 3.4428
},
"tts_vocoder4": {
"Bitrate": 4504.5
},
"tts_vocoder5": {
"Sample Rate": 48000
},
"tts_vocoder6": {
"Rank": 11
},
"tts_vocoder7": {
"LowSR-Rank": -1
},
"tts_vocoder8": {
"HighSR-Rank": 5
}
} |
{
"model_dtype": "torch.float16",
"model_name": "BigPants/SystemB_48kHz"
} | {
"tts_vocoder1": {
"MCD": 4.47
},
"tts_vocoder2": {
"Log F0 RMSE": 0.18
},
"tts_vocoder3": {
"UTMOS": 3.4785
},
"tts_vocoder4": {
"Bitrate": 834
},
"tts_vocoder5": {
"Sample Rate": 48000
},
"tts_vocoder6": {
"Rank": 5
},
"tts_vocoder7": {
"LowSR-Rank": -1
},
"tts_vocoder8": {
"HighSR-Rank": 2
}
} |
{
"model_dtype": "torch.float16",
"model_name": "BigPants/SystemC_16kHz"
} | {
"tts_vocoder1": {
"MCD": 3.57
},
"tts_vocoder2": {
"Log F0 RMSE": 0.18
},
"tts_vocoder3": {
"UTMOS": 3.5801
},
"tts_vocoder4": {
"Bitrate": 1479.5
},
"tts_vocoder5": {
"Sample Rate": 16000
},
"tts_vocoder6": {
"Rank": 10
},
"tts_vocoder7": {
"LowSR-Rank": 6
},
"tts_vocoder8": {
"HighSR-Rank": -1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "BigPants/SystemD_48kHz"
} | {
"tts_vocoder1": {
"MCD": 3.54
},
"tts_vocoder2": {
"Log F0 RMSE": 0.18
},
"tts_vocoder3": {
"UTMOS": 3.555
},
"tts_vocoder4": {
"Bitrate": 1479.5
},
"tts_vocoder5": {
"Sample Rate": 48000
},
"tts_vocoder6": {
"Rank": 2
},
"tts_vocoder7": {
"LowSR-Rank": -1
},
"tts_vocoder8": {
"HighSR-Rank": 1
}
} |
{
"model_dtype": "torch.float16",
"model_name": "BigPants/SystemE"
} | {
"tts_vocoder1": {
"MCD": 4.47
},
"tts_vocoder2": {
"Log F0 RMSE": 0.18
},
"tts_vocoder3": {
"UTMOS": 3.4784
},
"tts_vocoder4": {
"Bitrate": 834
},
"tts_vocoder5": {
"Sample Rate": 48000
},
"tts_vocoder6": {
"Rank": 6
},
"tts_vocoder7": {
"LowSR-Rank": -1
},
"tts_vocoder8": {
"HighSR-Rank": 3
}
} |