The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    TypeError
Message:      Couldn't cast array of type
struct<tts_vocoder1: struct<MCD: double>, tts_vocoder2: struct<Log F0 RMSE: double>, tts_vocoder3: struct<UTMOS: double>, tts_vocoder4: struct<Bitrate: double>, tts_vocoder5: struct<Sample Rate: int64>, tts_vocoder6: struct<Rank: int64>>
to
{'tts_vocoder1': {'MCD': Value(dtype='float64', id=None)}, 'tts_vocoder2': {'Log F0 RMSE': Value(dtype='float64', id=None)}, 'tts_vocoder3': {'UTMOS': Value(dtype='float64', id=None)}, 'tts_vocoder4': {'Bitrate': Value(dtype='float64', id=None)}, 'tts_vocoder5': {'Sample Rate': Value(dtype='int64', id=None)}, 'tts_vocoder6': {'Rank': Value(dtype='int64', id=None)}, 'tts_vocoder7': {'LowSR-Rank': Value(dtype='int64', id=None)}, 'tts_vocoder8': {'HighSR-Rank': Value(dtype='int64', id=None)}}
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in cast_table_to_schema
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in <listcomp>
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2122, in cast_array_to_feature
                  raise TypeError(f"Couldn't cast array of type\n{_short_str(array.type)}\nto\n{_short_str(feature)}")
              TypeError: Couldn't cast array of type
              struct<tts_vocoder1: struct<MCD: double>, tts_vocoder2: struct<Log F0 RMSE: double>, tts_vocoder3: struct<UTMOS: double>, tts_vocoder4: struct<Bitrate: double>, tts_vocoder5: struct<Sample Rate: int64>, tts_vocoder6: struct<Rank: int64>>
              to
              {'tts_vocoder1': {'MCD': Value(dtype='float64', id=None)}, 'tts_vocoder2': {'Log F0 RMSE': Value(dtype='float64', id=None)}, 'tts_vocoder3': {'UTMOS': Value(dtype='float64', id=None)}, 'tts_vocoder4': {'Bitrate': Value(dtype='float64', id=None)}, 'tts_vocoder5': {'Sample Rate': Value(dtype='int64', id=None)}, 'tts_vocoder6': {'Rank': Value(dtype='int64', id=None)}, 'tts_vocoder7': {'LowSR-Rank': Value(dtype='int64', id=None)}, 'tts_vocoder8': {'HighSR-Rank': Value(dtype='int64', id=None)}}
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

config
dict
results
dict
{ "model_dtype": "torch.float16", "model_name": "CMYueTing/ConHifiVocoder" }
{ "tts_vocoder1": { "MCD": 7.06 }, "tts_vocoder2": { "Log F0 RMSE": 0.28 }, "tts_vocoder3": { "UTMOS": 3.2993 }, "tts_vocoder4": { "Bitrate": 547 }, "tts_vocoder5": { "Sample Rate": 16000 }, "tts_vocoder6": { "Rank": 15 }, "tts_vocoder7": { "LowSR-Rank": 10 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "CMYueTing/YueTingVocoder" }
{ "tts_vocoder1": { "MCD": 6.66 }, "tts_vocoder2": { "Log F0 RMSE": 0.24 }, "tts_vocoder3": { "UTMOS": 3.5101 }, "tts_vocoder4": { "Bitrate": 547 }, "tts_vocoder5": { "Sample Rate": 16000 }, "tts_vocoder6": { "Rank": 9 }, "tts_vocoder7": { "LowSR-Rank": 5 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "CMYueTing/YueTingVocoder_2" }
{ "tts_vocoder1": { "MCD": 6.2 }, "tts_vocoder2": { "Log F0 RMSE": 0.23 }, "tts_vocoder3": { "UTMOS": 3.5525 }, "tts_vocoder4": { "Bitrate": 547 }, "tts_vocoder5": { "Sample Rate": 16000 }, "tts_vocoder6": { "Rank": 4 }, "tts_vocoder7": { "LowSR-Rank": 3 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "CMYueTing/YueTingVocoder_3" }
{ "tts_vocoder1": { "MCD": 6.24 }, "tts_vocoder2": { "Log F0 RMSE": 0.24 }, "tts_vocoder3": { "UTMOS": 3.5945 }, "tts_vocoder4": { "Bitrate": 547 }, "tts_vocoder5": { "Sample Rate": 16000 }, "tts_vocoder6": { "Rank": 1 }, "tts_vocoder7": { "LowSR-Rank": 1 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "ICACS_Speech_Synthesis/MultiDAC" }
{ "tts_vocoder1": { "MCD": 3.61 }, "tts_vocoder2": { "Log F0 RMSE": 0.16 }, "tts_vocoder3": { "UTMOS": 3.5351 }, "tts_vocoder4": { "Bitrate": 5077.6 }, "tts_vocoder5": { "Sample Rate": 48000 }, "tts_vocoder6": { "Rank": 7 }, "tts_vocoder7": { "LowSR-Rank": -1 }, "tts_vocoder8": { "HighSR-Rank": 4 } }
{ "model_dtype": "torch.float16", "model_name": "ICACS_Speech_Synthesis/SingleDAC" }
{ "tts_vocoder1": { "MCD": 3.41 }, "tts_vocoder2": { "Log F0 RMSE": 0.2 }, "tts_vocoder3": { "UTMOS": 3.4107 }, "tts_vocoder4": { "Bitrate": 503.6 }, "tts_vocoder5": { "Sample Rate": 16000 }, "tts_vocoder6": { "Rank": 14 }, "tts_vocoder7": { "LowSR-Rank": 9 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "UTokyo-sarulab/☺️" }
{ "tts_vocoder1": { "MCD": 4.41 }, "tts_vocoder2": { "Log F0 RMSE": 0.2 }, "tts_vocoder3": { "UTMOS": 3.5671 }, "tts_vocoder4": { "Bitrate": 1003.7 }, "tts_vocoder5": { "Sample Rate": 24000 }, "tts_vocoder6": { "Rank": 8 }, "tts_vocoder7": { "LowSR-Rank": 4 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "UTokyo-sarulab/πŸ˜ƒ" }
{ "tts_vocoder1": { "MCD": 4.81 }, "tts_vocoder2": { "Log F0 RMSE": 0.21 }, "tts_vocoder3": { "UTMOS": 3.5815 }, "tts_vocoder4": { "Bitrate": 670.3 }, "tts_vocoder5": { "Sample Rate": 16000 }, "tts_vocoder6": { "Rank": 3 }, "tts_vocoder7": { "LowSR-Rank": 2 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "UTokyo-sarulab/😜" }
{ "tts_vocoder1": { "MCD": 5.17 }, "tts_vocoder2": { "Log F0 RMSE": 0.22 }, "tts_vocoder3": { "UTMOS": 3.286 }, "tts_vocoder4": { "Bitrate": 501.7 }, "tts_vocoder5": { "Sample Rate": 24000 }, "tts_vocoder6": { "Rank": 16 }, "tts_vocoder7": { "LowSR-Rank": 11 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "UTokyo-sarulab/😝" }
{ "tts_vocoder1": { "MCD": 5.59 }, "tts_vocoder2": { "Log F0 RMSE": 0.21 }, "tts_vocoder3": { "UTMOS": 3.295 }, "tts_vocoder4": { "Bitrate": 335.1 }, "tts_vocoder5": { "Sample Rate": 16000 }, "tts_vocoder6": { "Rank": 12 }, "tts_vocoder7": { "LowSR-Rank": 7 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "UTokyo-sarulab/😯" }
{ "tts_vocoder1": { "MCD": 4.28 }, "tts_vocoder2": { "Log F0 RMSE": 0.19 }, "tts_vocoder3": { "UTMOS": 3.5431 }, "tts_vocoder4": { "Bitrate": 1003.7 }, "tts_vocoder5": { "Sample Rate": 24000 }, "tts_vocoder6": { "Rank": 13 }, "tts_vocoder7": { "LowSR-Rank": 8 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "baseline/discrete_hifigan" }
{ "tts_vocoder1": { "MCD": 7.19 }, "tts_vocoder2": { "Log F0 RMSE": 0.42 }, "tts_vocoder3": { "UTMOS": 2.3101 }, "tts_vocoder4": { "Bitrate": 448.3 }, "tts_vocoder5": { "Sample Rate": 16000 }, "tts_vocoder6": { "Rank": 17 }, "tts_vocoder7": { "LowSR-Rank": 12 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "BigPants/SystemA_48kHz" }
{ "tts_vocoder1": { "MCD": 3.86 }, "tts_vocoder2": { "Log F0 RMSE": 0.21 }, "tts_vocoder3": { "UTMOS": 2.95 }, "tts_vocoder4": { "Bitrate": 6007.4 }, "tts_vocoder5": { "Sample Rate": 48000 }, "tts_vocoder6": { "Rank": 10 } }
{ "model_dtype": "torch.float16", "model_name": "BigPants/SystemA_48kHz" }
{ "tts_vocoder1": { "MCD": 3.42 }, "tts_vocoder2": { "Log F0 RMSE": 0.18 }, "tts_vocoder3": { "UTMOS": 3.4428 }, "tts_vocoder4": { "Bitrate": 4504.5 }, "tts_vocoder5": { "Sample Rate": 48000 }, "tts_vocoder6": { "Rank": 11 }, "tts_vocoder7": { "LowSR-Rank": -1 }, "tts_vocoder8": { "HighSR-Rank": 5 } }
{ "model_dtype": "torch.float16", "model_name": "BigPants/SystemB_48kHz" }
{ "tts_vocoder1": { "MCD": 4.47 }, "tts_vocoder2": { "Log F0 RMSE": 0.18 }, "tts_vocoder3": { "UTMOS": 3.4785 }, "tts_vocoder4": { "Bitrate": 834 }, "tts_vocoder5": { "Sample Rate": 48000 }, "tts_vocoder6": { "Rank": 5 }, "tts_vocoder7": { "LowSR-Rank": -1 }, "tts_vocoder8": { "HighSR-Rank": 2 } }
{ "model_dtype": "torch.float16", "model_name": "BigPants/SystemC_16kHz" }
{ "tts_vocoder1": { "MCD": 3.57 }, "tts_vocoder2": { "Log F0 RMSE": 0.18 }, "tts_vocoder3": { "UTMOS": 3.5801 }, "tts_vocoder4": { "Bitrate": 1479.5 }, "tts_vocoder5": { "Sample Rate": 16000 }, "tts_vocoder6": { "Rank": 10 }, "tts_vocoder7": { "LowSR-Rank": 6 }, "tts_vocoder8": { "HighSR-Rank": -1 } }
{ "model_dtype": "torch.float16", "model_name": "BigPants/SystemD_48kHz" }
{ "tts_vocoder1": { "MCD": 3.54 }, "tts_vocoder2": { "Log F0 RMSE": 0.18 }, "tts_vocoder3": { "UTMOS": 3.555 }, "tts_vocoder4": { "Bitrate": 1479.5 }, "tts_vocoder5": { "Sample Rate": 48000 }, "tts_vocoder6": { "Rank": 2 }, "tts_vocoder7": { "LowSR-Rank": -1 }, "tts_vocoder8": { "HighSR-Rank": 1 } }
{ "model_dtype": "torch.float16", "model_name": "BigPants/SystemE" }
{ "tts_vocoder1": { "MCD": 4.47 }, "tts_vocoder2": { "Log F0 RMSE": 0.18 }, "tts_vocoder3": { "UTMOS": 3.4784 }, "tts_vocoder4": { "Bitrate": 834 }, "tts_vocoder5": { "Sample Rate": 48000 }, "tts_vocoder6": { "Rank": 6 }, "tts_vocoder7": { "LowSR-Rank": -1 }, "tts_vocoder8": { "HighSR-Rank": 3 } }