# Copyright 2023 FABRIC authors and the HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Union import torch from diffuser.utils.torch_utils import randn_tensor from packaging import version from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, UNet2DConditionModel from diffusers.configuration_utils import FrozenDict from diffusers.image_processor import VaeImageProcessor from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models.attention import BasicTransformerBlock from diffusers.models.attention_processor import LoRAAttnProcessor from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.schedulers import EulerAncestralDiscreteScheduler, KarrasDiffusionSchedulers from diffusers.utils import ( deprecate, logging, replace_example_docstring, ) logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import DiffusionPipeline >>> import torch >>> model_id = "dreamlike-art/dreamlike-photoreal-2.0" >>> pipe = DiffusionPipeline(model_id, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric") >>> pipe = pipe.to("cuda") >>> prompt = "a giant standing in a fantasy landscape best quality" >>> liked = [] # list of images for positive feedback >>> disliked = [] # list of images for negative feedback >>> image = pipe(prompt, num_images=4, liked=liked, disliked=disliked).images[0] ``` """ class FabricCrossAttnProcessor: def __init__(self): self.attntion_probs = None def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, weights=None, lora_scale=1.0, ): batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if isinstance(attn.processor, LoRAAttnProcessor): query = attn.to_q(hidden_states) + lora_scale * attn.processor.to_q_lora(hidden_states) else: query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if isinstance(attn.processor, LoRAAttnProcessor): key = attn.to_k(encoder_hidden_states) + lora_scale * attn.processor.to_k_lora(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) + lora_scale * attn.processor.to_v_lora(encoder_hidden_states) else: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) if weights is not None: if weights.shape[0] != 1: weights = weights.repeat_interleave(attn.heads, dim=0) attention_probs = attention_probs * weights[:, None] attention_probs = attention_probs / attention_probs.sum(dim=-1, keepdim=True) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj if isinstance(attn.processor, LoRAAttnProcessor): hidden_states = attn.to_out[0](hidden_states) + lora_scale * attn.processor.to_out_lora(hidden_states) else: hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class FabricPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion and conditioning the results using feedback images. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`EulerAncestralDiscreteScheduler`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co./runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, requires_safety_checker: bool = True, ): super().__init__() is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( version.parse(unet.config._diffusers_version).base_version ) < version.parse("0.9.0.dev0") is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( unet=unet, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def get_unet_hidden_states(self, z_all, t, prompt_embd): cached_hidden_states = [] for module in self.unet.modules(): if isinstance(module, BasicTransformerBlock): def new_forward(self, hidden_states, *args, **kwargs): cached_hidden_states.append(hidden_states.clone().detach().cpu()) return self.old_forward(hidden_states, *args, **kwargs) module.attn1.old_forward = module.attn1.forward module.attn1.forward = new_forward.__get__(module.attn1) # run forward pass to cache hidden states, output can be discarded _ = self.unet(z_all, t, encoder_hidden_states=prompt_embd) # restore original forward pass for module in self.unet.modules(): if isinstance(module, BasicTransformerBlock): module.attn1.forward = module.attn1.old_forward del module.attn1.old_forward return cached_hidden_states def unet_forward_with_cached_hidden_states( self, z_all, t, prompt_embd, cached_pos_hiddens: Optional[List[torch.Tensor]] = None, cached_neg_hiddens: Optional[List[torch.Tensor]] = None, pos_weights=(0.8, 0.8), neg_weights=(0.5, 0.5), ): if cached_pos_hiddens is None and cached_neg_hiddens is None: return self.unet(z_all, t, encoder_hidden_states=prompt_embd) local_pos_weights = torch.linspace(*pos_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist() local_neg_weights = torch.linspace(*neg_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist() for block, pos_weight, neg_weight in zip( self.unet.down_blocks + [self.unet.mid_block] + self.unet.up_blocks, local_pos_weights + [pos_weights[1]] + local_pos_weights[::-1], local_neg_weights + [neg_weights[1]] + local_neg_weights[::-1], ): for module in block.modules(): if isinstance(module, BasicTransformerBlock): def new_forward( self, hidden_states, pos_weight=pos_weight, neg_weight=neg_weight, **kwargs, ): cond_hiddens, uncond_hiddens = hidden_states.chunk(2, dim=0) batch_size, d_model = cond_hiddens.shape[:2] device, dtype = hidden_states.device, hidden_states.dtype weights = torch.ones(batch_size, d_model, device=device, dtype=dtype) out_pos = self.old_forward(hidden_states) out_neg = self.old_forward(hidden_states) if cached_pos_hiddens is not None: cached_pos_hs = cached_pos_hiddens.pop(0).to(hidden_states.device) cond_pos_hs = torch.cat([cond_hiddens, cached_pos_hs], dim=1) pos_weights = weights.clone().repeat(1, 1 + cached_pos_hs.shape[1] // d_model) pos_weights[:, d_model:] = pos_weight attn_with_weights = FabricCrossAttnProcessor() out_pos = attn_with_weights( self, cond_hiddens, encoder_hidden_states=cond_pos_hs, weights=pos_weights, ) else: out_pos = self.old_forward(cond_hiddens) if cached_neg_hiddens is not None: cached_neg_hs = cached_neg_hiddens.pop(0).to(hidden_states.device) uncond_neg_hs = torch.cat([uncond_hiddens, cached_neg_hs], dim=1) neg_weights = weights.clone().repeat(1, 1 + cached_neg_hs.shape[1] // d_model) neg_weights[:, d_model:] = neg_weight attn_with_weights = FabricCrossAttnProcessor() out_neg = attn_with_weights( self, uncond_hiddens, encoder_hidden_states=uncond_neg_hs, weights=neg_weights, ) else: out_neg = self.old_forward(uncond_hiddens) out = torch.cat([out_pos, out_neg], dim=0) return out module.attn1.old_forward = module.attn1.forward module.attn1.forward = new_forward.__get__(module.attn1) out = self.unet(z_all, t, encoder_hidden_states=prompt_embd) # restore original forward pass for module in self.unet.modules(): if isinstance(module, BasicTransformerBlock): module.attn1.forward = module.attn1.old_forward del module.attn1.old_forward return out def preprocess_feedback_images(self, images, vae, dim, device, dtype, generator) -> torch.tensor: images_t = [self.image_to_tensor(img, dim, dtype) for img in images] images_t = torch.stack(images_t).to(device) latents = vae.config.scaling_factor * vae.encode(images_t).latent_dist.sample(generator) return torch.cat([latents], dim=0) def check_inputs( self, prompt, negative_prompt=None, liked=None, disliked=None, height=None, width=None, ): if prompt is None: raise ValueError("Provide `prompt`. Cannot leave both `prompt` undefined.") elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and ( not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list) ): raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") if liked is not None and not isinstance(liked, list): raise ValueError(f"`liked` has to be of type `list` but is {type(liked)}") if disliked is not None and not isinstance(disliked, list): raise ValueError(f"`disliked` has to be of type `list` but is {type(disliked)}") if height is not None and not isinstance(height, int): raise ValueError(f"`height` has to be of type `int` but is {type(height)}") if width is not None and not isinstance(width, int): raise ValueError(f"`width` has to be of type `int` but is {type(width)}") @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = "", negative_prompt: Optional[Union[str, List[str]]] = "lowres, bad anatomy, bad hands, cropped, worst quality", liked: Optional[Union[List[str], List[Image.Image]]] = [], disliked: Optional[Union[List[str], List[Image.Image]]] = [], generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, height: int = 512, width: int = 512, return_dict: bool = True, num_images: int = 4, guidance_scale: float = 7.0, num_inference_steps: int = 20, output_type: Optional[str] = "pil", feedback_start_ratio: float = 0.33, feedback_end_ratio: float = 0.66, min_weight: float = 0.05, max_weight: float = 0.8, neg_scale: float = 0.5, pos_bottleneck_scale: float = 1.0, neg_bottleneck_scale: float = 1.0, latents: Optional[torch.FloatTensor] = None, ): r""" The call function to the pipeline for generation. Generate a trajectory of images with binary feedback. The feedback can be given as a list of liked and disliked images. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds` instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). liked (`List[Image.Image]` or `List[str]`, *optional*): Encourages images with liked features. disliked (`List[Image.Image]` or `List[str]`, *optional*): Discourages images with disliked features. generator (`torch.Generator` or `List[torch.Generator]` or `int`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) or an `int` to make generation deterministic. height (`int`, *optional*, defaults to 512): Height of the generated image. width (`int`, *optional*, defaults to 512): Width of the generated image. num_images (`int`, *optional*, defaults to 4): The number of images to generate per prompt. guidance_scale (`float`, *optional*, defaults to 7.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. num_inference_steps (`int`, *optional*, defaults to 20): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. feedback_start_ratio (`float`, *optional*, defaults to `.33`): Start point for providing feedback (between 0 and 1). feedback_end_ratio (`float`, *optional*, defaults to `.66`): End point for providing feedback (between 0 and 1). min_weight (`float`, *optional*, defaults to `.05`): Minimum weight for feedback. max_weight (`float`, *optional*, defults tp `1.0`): Maximum weight for feedback. neg_scale (`float`, *optional*, defaults to `.5`): Scale factor for negative feedback. Examples: Returns: [`~pipelines.fabric.FabricPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ self.check_inputs(prompt, negative_prompt, liked, disliked) device = self._execution_device dtype = self.unet.dtype if isinstance(prompt, str) and prompt is not None: batch_size = 1 elif isinstance(prompt, list) and prompt is not None: batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if isinstance(negative_prompt, str): negative_prompt = negative_prompt elif isinstance(negative_prompt, list): negative_prompt = negative_prompt else: assert len(negative_prompt) == batch_size shape = ( batch_size * num_images, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor, ) latent_noise = randn_tensor( shape, device=device, dtype=dtype, generator=generator, ) positive_latents = ( self.preprocess_feedback_images(liked, self.vae, (height, width), device, dtype, generator) if liked and len(liked) > 0 else torch.tensor( [], device=device, dtype=dtype, ) ) negative_latents = ( self.preprocess_feedback_images(disliked, self.vae, (height, width), device, dtype, generator) if disliked and len(disliked) > 0 else torch.tensor( [], device=device, dtype=dtype, ) ) do_classifier_free_guidance = guidance_scale > 0.1 (prompt_neg_embs, prompt_pos_embs) = self._encode_prompt( prompt, device, num_images, do_classifier_free_guidance, negative_prompt, ).split([num_images * batch_size, num_images * batch_size]) batched_prompt_embd = torch.cat([prompt_pos_embs, prompt_neg_embs], dim=0) null_tokens = self.tokenizer( [""], return_tensors="pt", max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = null_tokens.attention_mask.to(device) else: attention_mask = None null_prompt_emb = self.text_encoder( input_ids=null_tokens.input_ids.to(device), attention_mask=attention_mask, ).last_hidden_state null_prompt_emb = null_prompt_emb.to(device=device, dtype=dtype) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps latent_noise = latent_noise * self.scheduler.init_noise_sigma num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order ref_start_idx = round(len(timesteps) * feedback_start_ratio) ref_end_idx = round(len(timesteps) * feedback_end_ratio) with self.progress_bar(total=num_inference_steps) as pbar: for i, t in enumerate(timesteps): sigma = self.scheduler.sigma_t[t] if hasattr(self.scheduler, "sigma_t") else 0 if hasattr(self.scheduler, "sigmas"): sigma = self.scheduler.sigmas[i] alpha_hat = 1 / (sigma**2 + 1) z_single = self.scheduler.scale_model_input(latent_noise, t) z_all = torch.cat([z_single] * 2, dim=0) z_ref = torch.cat([positive_latents, negative_latents], dim=0) if i >= ref_start_idx and i <= ref_end_idx: weight_factor = max_weight else: weight_factor = min_weight pos_ws = (weight_factor, weight_factor * pos_bottleneck_scale) neg_ws = (weight_factor * neg_scale, weight_factor * neg_scale * neg_bottleneck_scale) if z_ref.size(0) > 0 and weight_factor > 0: noise = torch.randn_like(z_ref) if isinstance(self.scheduler, EulerAncestralDiscreteScheduler): z_ref_noised = (alpha_hat**0.5 * z_ref + (1 - alpha_hat) ** 0.5 * noise).type(dtype) else: z_ref_noised = self.scheduler.add_noise(z_ref, noise, t) ref_prompt_embd = torch.cat( [null_prompt_emb] * (len(positive_latents) + len(negative_latents)), dim=0 ) cached_hidden_states = self.get_unet_hidden_states(z_ref_noised, t, ref_prompt_embd) n_pos, n_neg = positive_latents.shape[0], negative_latents.shape[0] cached_pos_hs, cached_neg_hs = [], [] for hs in cached_hidden_states: cached_pos, cached_neg = hs.split([n_pos, n_neg], dim=0) cached_pos = cached_pos.view(1, -1, *cached_pos.shape[2:]).expand(num_images, -1, -1) cached_neg = cached_neg.view(1, -1, *cached_neg.shape[2:]).expand(num_images, -1, -1) cached_pos_hs.append(cached_pos) cached_neg_hs.append(cached_neg) if n_pos == 0: cached_pos_hs = None if n_neg == 0: cached_neg_hs = None else: cached_pos_hs, cached_neg_hs = None, None unet_out = self.unet_forward_with_cached_hidden_states( z_all, t, prompt_embd=batched_prompt_embd, cached_pos_hiddens=cached_pos_hs, cached_neg_hiddens=cached_neg_hs, pos_weights=pos_ws, neg_weights=neg_ws, )[0] noise_cond, noise_uncond = unet_out.chunk(2) guidance = noise_cond - noise_uncond noise_pred = noise_uncond + guidance_scale * guidance latent_noise = self.scheduler.step(noise_pred, t, latent_noise)[0] if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): pbar.update() y = self.vae.decode(latent_noise / self.vae.config.scaling_factor, return_dict=False)[0] imgs = self.image_processor.postprocess( y, output_type=output_type, ) if not return_dict: return imgs return StableDiffusionPipelineOutput(imgs, False) def image_to_tensor(self, image: Union[str, Image.Image], dim: tuple, dtype): """ Convert latent PIL image to a torch tensor for further processing. """ if isinstance(image, str): image = Image.open(image) if not image.mode == "RGB": image = image.convert("RGB") image = self.image_processor.preprocess(image, height=dim[0], width=dim[1])[0] return image.type(dtype)