# # Copyright 2023 The HuggingFace Inc. team. # SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import os from collections import OrderedDict from copy import copy from typing import List, Optional, Union import numpy as np import onnx import onnx_graphsurgeon as gs import tensorrt as trt import torch from huggingface_hub import snapshot_download from onnx import shape_inference from polygraphy import cuda from polygraphy.backend.common import bytes_from_path from polygraphy.backend.onnx.loader import fold_constants from polygraphy.backend.trt import ( CreateConfig, Profile, engine_from_bytes, engine_from_network, network_from_onnx_path, save_engine, ) from polygraphy.backend.trt import util as trt_util from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.stable_diffusion import ( StableDiffusionPipeline, StableDiffusionPipelineOutput, StableDiffusionSafetyChecker, ) from diffusers.schedulers import DDIMScheduler from diffusers.utils import DIFFUSERS_CACHE, logging """ Installation instructions python3 -m pip install --upgrade tensorrt python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com python3 -m pip install onnxruntime """ TRT_LOGGER = trt.Logger(trt.Logger.ERROR) logger = logging.get_logger(__name__) # pylint: disable=invalid-name # Map of numpy dtype -> torch dtype numpy_to_torch_dtype_dict = { np.uint8: torch.uint8, np.int8: torch.int8, np.int16: torch.int16, np.int32: torch.int32, np.int64: torch.int64, np.float16: torch.float16, np.float32: torch.float32, np.float64: torch.float64, np.complex64: torch.complex64, np.complex128: torch.complex128, } if np.version.full_version >= "1.24.0": numpy_to_torch_dtype_dict[np.bool_] = torch.bool else: numpy_to_torch_dtype_dict[np.bool] = torch.bool # Map of torch dtype -> numpy dtype torch_to_numpy_dtype_dict = {value: key for (key, value) in numpy_to_torch_dtype_dict.items()} def device_view(t): return cuda.DeviceView(ptr=t.data_ptr(), shape=t.shape, dtype=torch_to_numpy_dtype_dict[t.dtype]) class Engine: def __init__(self, engine_path): self.engine_path = engine_path self.engine = None self.context = None self.buffers = OrderedDict() self.tensors = OrderedDict() def __del__(self): [buf.free() for buf in self.buffers.values() if isinstance(buf, cuda.DeviceArray)] del self.engine del self.context del self.buffers del self.tensors def build( self, onnx_path, fp16, input_profile=None, enable_preview=False, enable_all_tactics=False, timing_cache=None, workspace_size=0, ): logger.warning(f"Building TensorRT engine for {onnx_path}: {self.engine_path}") p = Profile() if input_profile: for name, dims in input_profile.items(): assert len(dims) == 3 p.add(name, min=dims[0], opt=dims[1], max=dims[2]) config_kwargs = {} config_kwargs["preview_features"] = [trt.PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805] if enable_preview: # Faster dynamic shapes made optional since it increases engine build time. config_kwargs["preview_features"].append(trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805) if workspace_size > 0: config_kwargs["memory_pool_limits"] = {trt.MemoryPoolType.WORKSPACE: workspace_size} if not enable_all_tactics: config_kwargs["tactic_sources"] = [] engine = engine_from_network( network_from_onnx_path(onnx_path), config=CreateConfig(fp16=fp16, profiles=[p], load_timing_cache=timing_cache, **config_kwargs), save_timing_cache=timing_cache, ) save_engine(engine, path=self.engine_path) def load(self): logger.warning(f"Loading TensorRT engine: {self.engine_path}") self.engine = engine_from_bytes(bytes_from_path(self.engine_path)) def activate(self): self.context = self.engine.create_execution_context() def allocate_buffers(self, shape_dict=None, device="cuda"): for idx in range(trt_util.get_bindings_per_profile(self.engine)): binding = self.engine[idx] if shape_dict and binding in shape_dict: shape = shape_dict[binding] else: shape = self.engine.get_binding_shape(binding) dtype = trt.nptype(self.engine.get_binding_dtype(binding)) if self.engine.binding_is_input(binding): self.context.set_binding_shape(idx, shape) tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device) self.tensors[binding] = tensor self.buffers[binding] = cuda.DeviceView(ptr=tensor.data_ptr(), shape=shape, dtype=dtype) def infer(self, feed_dict, stream): start_binding, end_binding = trt_util.get_active_profile_bindings(self.context) # shallow copy of ordered dict device_buffers = copy(self.buffers) for name, buf in feed_dict.items(): assert isinstance(buf, cuda.DeviceView) device_buffers[name] = buf bindings = [0] * start_binding + [buf.ptr for buf in device_buffers.values()] noerror = self.context.execute_async_v2(bindings=bindings, stream_handle=stream.ptr) if not noerror: raise ValueError("ERROR: inference failed.") return self.tensors class Optimizer: def __init__(self, onnx_graph): self.graph = gs.import_onnx(onnx_graph) def cleanup(self, return_onnx=False): self.graph.cleanup().toposort() if return_onnx: return gs.export_onnx(self.graph) def select_outputs(self, keep, names=None): self.graph.outputs = [self.graph.outputs[o] for o in keep] if names: for i, name in enumerate(names): self.graph.outputs[i].name = name def fold_constants(self, return_onnx=False): onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True) self.graph = gs.import_onnx(onnx_graph) if return_onnx: return onnx_graph def infer_shapes(self, return_onnx=False): onnx_graph = gs.export_onnx(self.graph) if onnx_graph.ByteSize() > 2147483648: raise TypeError("ERROR: model size exceeds supported 2GB limit") else: onnx_graph = shape_inference.infer_shapes(onnx_graph) self.graph = gs.import_onnx(onnx_graph) if return_onnx: return onnx_graph class BaseModel: def __init__(self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77): self.model = model self.name = "SD Model" self.fp16 = fp16 self.device = device self.min_batch = 1 self.max_batch = max_batch_size self.min_image_shape = 256 # min image resolution: 256x256 self.max_image_shape = 1024 # max image resolution: 1024x1024 self.min_latent_shape = self.min_image_shape // 8 self.max_latent_shape = self.max_image_shape // 8 self.embedding_dim = embedding_dim self.text_maxlen = text_maxlen def get_model(self): return self.model def get_input_names(self): pass def get_output_names(self): pass def get_dynamic_axes(self): return None def get_sample_input(self, batch_size, image_height, image_width): pass def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): return None def get_shape_dict(self, batch_size, image_height, image_width): return None def optimize(self, onnx_graph): opt = Optimizer(onnx_graph) opt.cleanup() opt.fold_constants() opt.infer_shapes() onnx_opt_graph = opt.cleanup(return_onnx=True) return onnx_opt_graph def check_dims(self, batch_size, image_height, image_width): assert batch_size >= self.min_batch and batch_size <= self.max_batch assert image_height % 8 == 0 or image_width % 8 == 0 latent_height = image_height // 8 latent_width = image_width // 8 assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape return (latent_height, latent_width) def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape): min_batch = batch_size if static_batch else self.min_batch max_batch = batch_size if static_batch else self.max_batch latent_height = image_height // 8 latent_width = image_width // 8 min_image_height = image_height if static_shape else self.min_image_shape max_image_height = image_height if static_shape else self.max_image_shape min_image_width = image_width if static_shape else self.min_image_shape max_image_width = image_width if static_shape else self.max_image_shape min_latent_height = latent_height if static_shape else self.min_latent_shape max_latent_height = latent_height if static_shape else self.max_latent_shape min_latent_width = latent_width if static_shape else self.min_latent_shape max_latent_width = latent_width if static_shape else self.max_latent_shape return ( min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width, min_latent_height, max_latent_height, min_latent_width, max_latent_width, ) def getOnnxPath(model_name, onnx_dir, opt=True): return os.path.join(onnx_dir, model_name + (".opt" if opt else "") + ".onnx") def getEnginePath(model_name, engine_dir): return os.path.join(engine_dir, model_name + ".plan") def build_engines( models: dict, engine_dir, onnx_dir, onnx_opset, opt_image_height, opt_image_width, opt_batch_size=1, force_engine_rebuild=False, static_batch=False, static_shape=True, enable_preview=False, enable_all_tactics=False, timing_cache=None, max_workspace_size=0, ): built_engines = {} if not os.path.isdir(onnx_dir): os.makedirs(onnx_dir) if not os.path.isdir(engine_dir): os.makedirs(engine_dir) # Export models to ONNX for model_name, model_obj in models.items(): engine_path = getEnginePath(model_name, engine_dir) if force_engine_rebuild or not os.path.exists(engine_path): logger.warning("Building Engines...") logger.warning("Engine build can take a while to complete") onnx_path = getOnnxPath(model_name, onnx_dir, opt=False) onnx_opt_path = getOnnxPath(model_name, onnx_dir) if force_engine_rebuild or not os.path.exists(onnx_opt_path): if force_engine_rebuild or not os.path.exists(onnx_path): logger.warning(f"Exporting model: {onnx_path}") model = model_obj.get_model() with torch.inference_mode(), torch.autocast("cuda"): inputs = model_obj.get_sample_input(opt_batch_size, opt_image_height, opt_image_width) torch.onnx.export( model, inputs, onnx_path, export_params=True, opset_version=onnx_opset, do_constant_folding=True, input_names=model_obj.get_input_names(), output_names=model_obj.get_output_names(), dynamic_axes=model_obj.get_dynamic_axes(), ) del model torch.cuda.empty_cache() gc.collect() else: logger.warning(f"Found cached model: {onnx_path}") # Optimize onnx if force_engine_rebuild or not os.path.exists(onnx_opt_path): logger.warning(f"Generating optimizing model: {onnx_opt_path}") onnx_opt_graph = model_obj.optimize(onnx.load(onnx_path)) onnx.save(onnx_opt_graph, onnx_opt_path) else: logger.warning(f"Found cached optimized model: {onnx_opt_path} ") # Build TensorRT engines for model_name, model_obj in models.items(): engine_path = getEnginePath(model_name, engine_dir) engine = Engine(engine_path) onnx_path = getOnnxPath(model_name, onnx_dir, opt=False) onnx_opt_path = getOnnxPath(model_name, onnx_dir) if force_engine_rebuild or not os.path.exists(engine.engine_path): engine.build( onnx_opt_path, fp16=True, input_profile=model_obj.get_input_profile( opt_batch_size, opt_image_height, opt_image_width, static_batch=static_batch, static_shape=static_shape, ), enable_preview=enable_preview, timing_cache=timing_cache, workspace_size=max_workspace_size, ) built_engines[model_name] = engine # Load and activate TensorRT engines for model_name, model_obj in models.items(): engine = built_engines[model_name] engine.load() engine.activate() return built_engines def runEngine(engine, feed_dict, stream): return engine.infer(feed_dict, stream) class CLIP(BaseModel): def __init__(self, model, device, max_batch_size, embedding_dim): super(CLIP, self).__init__( model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim ) self.name = "CLIP" def get_input_names(self): return ["input_ids"] def get_output_names(self): return ["text_embeddings", "pooler_output"] def get_dynamic_axes(self): return {"input_ids": {0: "B"}, "text_embeddings": {0: "B"}} def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): self.check_dims(batch_size, image_height, image_width) min_batch, max_batch, _, _, _, _, _, _, _, _ = self.get_minmax_dims( batch_size, image_height, image_width, static_batch, static_shape ) return { "input_ids": [(min_batch, self.text_maxlen), (batch_size, self.text_maxlen), (max_batch, self.text_maxlen)] } def get_shape_dict(self, batch_size, image_height, image_width): self.check_dims(batch_size, image_height, image_width) return { "input_ids": (batch_size, self.text_maxlen), "text_embeddings": (batch_size, self.text_maxlen, self.embedding_dim), } def get_sample_input(self, batch_size, image_height, image_width): self.check_dims(batch_size, image_height, image_width) return torch.zeros(batch_size, self.text_maxlen, dtype=torch.int32, device=self.device) def optimize(self, onnx_graph): opt = Optimizer(onnx_graph) opt.select_outputs([0]) # delete graph output#1 opt.cleanup() opt.fold_constants() opt.infer_shapes() opt.select_outputs([0], names=["text_embeddings"]) # rename network output opt_onnx_graph = opt.cleanup(return_onnx=True) return opt_onnx_graph def make_CLIP(model, device, max_batch_size, embedding_dim, inpaint=False): return CLIP(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim) class UNet(BaseModel): def __init__( self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77, unet_dim=4 ): super(UNet, self).__init__( model=model, fp16=fp16, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim, text_maxlen=text_maxlen, ) self.unet_dim = unet_dim self.name = "UNet" def get_input_names(self): return ["sample", "timestep", "encoder_hidden_states"] def get_output_names(self): return ["latent"] def get_dynamic_axes(self): return { "sample": {0: "2B", 2: "H", 3: "W"}, "encoder_hidden_states": {0: "2B"}, "latent": {0: "2B", 2: "H", 3: "W"}, } def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) ( min_batch, max_batch, _, _, _, _, min_latent_height, max_latent_height, min_latent_width, max_latent_width, ) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) return { "sample": [ (2 * min_batch, self.unet_dim, min_latent_height, min_latent_width), (2 * batch_size, self.unet_dim, latent_height, latent_width), (2 * max_batch, self.unet_dim, max_latent_height, max_latent_width), ], "encoder_hidden_states": [ (2 * min_batch, self.text_maxlen, self.embedding_dim), (2 * batch_size, self.text_maxlen, self.embedding_dim), (2 * max_batch, self.text_maxlen, self.embedding_dim), ], } def get_shape_dict(self, batch_size, image_height, image_width): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) return { "sample": (2 * batch_size, self.unet_dim, latent_height, latent_width), "encoder_hidden_states": (2 * batch_size, self.text_maxlen, self.embedding_dim), "latent": (2 * batch_size, 4, latent_height, latent_width), } def get_sample_input(self, batch_size, image_height, image_width): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) dtype = torch.float16 if self.fp16 else torch.float32 return ( torch.randn( 2 * batch_size, self.unet_dim, latent_height, latent_width, dtype=torch.float32, device=self.device ), torch.tensor([1.0], dtype=torch.float32, device=self.device), torch.randn(2 * batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device), ) def make_UNet(model, device, max_batch_size, embedding_dim, inpaint=False): return UNet( model, fp16=True, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim, unet_dim=(9 if inpaint else 4), ) class VAE(BaseModel): def __init__(self, model, device, max_batch_size, embedding_dim): super(VAE, self).__init__( model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim ) self.name = "VAE decoder" def get_input_names(self): return ["latent"] def get_output_names(self): return ["images"] def get_dynamic_axes(self): return {"latent": {0: "B", 2: "H", 3: "W"}, "images": {0: "B", 2: "8H", 3: "8W"}} def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) ( min_batch, max_batch, _, _, _, _, min_latent_height, max_latent_height, min_latent_width, max_latent_width, ) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) return { "latent": [ (min_batch, 4, min_latent_height, min_latent_width), (batch_size, 4, latent_height, latent_width), (max_batch, 4, max_latent_height, max_latent_width), ] } def get_shape_dict(self, batch_size, image_height, image_width): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) return { "latent": (batch_size, 4, latent_height, latent_width), "images": (batch_size, 3, image_height, image_width), } def get_sample_input(self, batch_size, image_height, image_width): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device) def make_VAE(model, device, max_batch_size, embedding_dim, inpaint=False): return VAE(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim) class TensorRTStableDiffusionPipeline(StableDiffusionPipeline): r""" Pipeline for text-to-image generation using TensorRT accelerated Stable Diffusion. This model inherits from [`StableDiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co./runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPFeatureExtractor, requires_safety_checker: bool = True, stages=["clip", "unet", "vae"], image_height: int = 768, image_width: int = 768, max_batch_size: int = 16, # ONNX export parameters onnx_opset: int = 17, onnx_dir: str = "onnx", # TensorRT engine build parameters engine_dir: str = "engine", force_engine_rebuild: bool = False, timing_cache: str = "timing_cache", ): super().__init__( vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker ) self.vae.forward = self.vae.decode self.stages = stages self.image_height, self.image_width = image_height, image_width self.inpaint = False self.onnx_opset = onnx_opset self.onnx_dir = onnx_dir self.engine_dir = engine_dir self.force_engine_rebuild = force_engine_rebuild self.timing_cache = timing_cache self.build_static_batch = False self.build_dynamic_shape = False self.build_preview_features = False self.max_batch_size = max_batch_size # TODO: Restrict batch size to 4 for larger image dimensions as a WAR for TensorRT limitation. if self.build_dynamic_shape or self.image_height > 512 or self.image_width > 512: self.max_batch_size = 4 self.stream = None # loaded in loadResources() self.models = {} # loaded in __loadModels() self.engine = {} # loaded in build_engines() def __loadModels(self): # Load pipeline models self.embedding_dim = self.text_encoder.config.hidden_size models_args = { "device": self.torch_device, "max_batch_size": self.max_batch_size, "embedding_dim": self.embedding_dim, "inpaint": self.inpaint, } if "clip" in self.stages: self.models["clip"] = make_CLIP(self.text_encoder, **models_args) if "unet" in self.stages: self.models["unet"] = make_UNet(self.unet, **models_args) if "vae" in self.stages: self.models["vae"] = make_VAE(self.vae, **models_args) @classmethod def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) cls.cached_folder = ( pretrained_model_name_or_path if os.path.isdir(pretrained_model_name_or_path) else snapshot_download( pretrained_model_name_or_path, cache_dir=cache_dir, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, ) ) def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings: bool = False): super().to(torch_device, silence_dtype_warnings=silence_dtype_warnings) self.onnx_dir = os.path.join(self.cached_folder, self.onnx_dir) self.engine_dir = os.path.join(self.cached_folder, self.engine_dir) self.timing_cache = os.path.join(self.cached_folder, self.timing_cache) # set device self.torch_device = self._execution_device logger.warning(f"Running inference on device: {self.torch_device}") # load models self.__loadModels() # build engines self.engine = build_engines( self.models, self.engine_dir, self.onnx_dir, self.onnx_opset, opt_image_height=self.image_height, opt_image_width=self.image_width, force_engine_rebuild=self.force_engine_rebuild, static_batch=self.build_static_batch, static_shape=not self.build_dynamic_shape, enable_preview=self.build_preview_features, timing_cache=self.timing_cache, ) return self def __encode_prompt(self, prompt, negative_prompt): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). """ # Tokenize prompt text_input_ids = ( self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) .input_ids.type(torch.int32) .to(self.torch_device) ) text_input_ids_inp = device_view(text_input_ids) # NOTE: output tensor for CLIP must be cloned because it will be overwritten when called again for negative prompt text_embeddings = runEngine(self.engine["clip"], {"input_ids": text_input_ids_inp}, self.stream)[ "text_embeddings" ].clone() # Tokenize negative prompt uncond_input_ids = ( self.tokenizer( negative_prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) .input_ids.type(torch.int32) .to(self.torch_device) ) uncond_input_ids_inp = device_view(uncond_input_ids) uncond_embeddings = runEngine(self.engine["clip"], {"input_ids": uncond_input_ids_inp}, self.stream)[ "text_embeddings" ] # Concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes for classifier free guidance text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).to(dtype=torch.float16) return text_embeddings def __denoise_latent( self, latents, text_embeddings, timesteps=None, step_offset=0, mask=None, masked_image_latents=None ): if not isinstance(timesteps, torch.Tensor): timesteps = self.scheduler.timesteps for step_index, timestep in enumerate(timesteps): # Expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep) if isinstance(mask, torch.Tensor): latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) # Predict the noise residual timestep_float = timestep.float() if timestep.dtype != torch.float32 else timestep sample_inp = device_view(latent_model_input) timestep_inp = device_view(timestep_float) embeddings_inp = device_view(text_embeddings) noise_pred = runEngine( self.engine["unet"], {"sample": sample_inp, "timestep": timestep_inp, "encoder_hidden_states": embeddings_inp}, self.stream, )["latent"] # Perform guidance noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) latents = self.scheduler.step(noise_pred, timestep, latents).prev_sample latents = 1.0 / 0.18215 * latents return latents def __decode_latent(self, latents): images = runEngine(self.engine["vae"], {"latent": device_view(latents)}, self.stream)["images"] images = (images / 2 + 0.5).clamp(0, 1) return images.cpu().permute(0, 2, 3, 1).float().numpy() def __loadResources(self, image_height, image_width, batch_size): self.stream = cuda.Stream() # Allocate buffers for TensorRT engine bindings for model_name, obj in self.models.items(): self.engine[model_name].allocate_buffers( shape_dict=obj.get_shape_dict(batch_size, image_height, image_width), device=self.torch_device ) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. """ self.generator = generator self.denoising_steps = num_inference_steps self.guidance_scale = guidance_scale # Pre-compute latent input scales and linear multistep coefficients self.scheduler.set_timesteps(self.denoising_steps, device=self.torch_device) # Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 prompt = [prompt] elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"Expected prompt to be of type list or str but got {type(prompt)}") if negative_prompt is None: negative_prompt = [""] * batch_size if negative_prompt is not None and isinstance(negative_prompt, str): negative_prompt = [negative_prompt] assert len(prompt) == len(negative_prompt) if batch_size > self.max_batch_size: raise ValueError( f"Batch size {len(prompt)} is larger than allowed {self.max_batch_size}. If dynamic shape is used, then maximum batch size is 4" ) # load resources self.__loadResources(self.image_height, self.image_width, batch_size) with torch.inference_mode(), torch.autocast("cuda"), trt.Runtime(TRT_LOGGER): # CLIP text encoder text_embeddings = self.__encode_prompt(prompt, negative_prompt) # Pre-initialize latents num_channels_latents = self.unet.in_channels latents = self.prepare_latents( batch_size, num_channels_latents, self.image_height, self.image_width, torch.float32, self.torch_device, generator, ) # UNet denoiser latents = self.__denoise_latent(latents, text_embeddings) # VAE decode latent images = self.__decode_latent(latents) images, has_nsfw_concept = self.run_safety_checker(images, self.torch_device, text_embeddings.dtype) images = self.numpy_to_pil(images) return StableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)