Datasets:

ArXiv:
Diffusers Bot commited on
Commit
f118f8e
·
verified ·
1 Parent(s): d1c9639

Upload folder using huggingface_hub

Browse files
main/fresco_v2v.py CHANGED
@@ -2436,7 +2436,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
2436
  )
2437
 
2438
  if guess_mode and self.do_classifier_free_guidance:
2439
- # Infered ControlNet only for the conditional batch.
2440
  # To apply the output of ControlNet to both the unconditional and conditional batches,
2441
  # add 0 to the unconditional batch to keep it unchanged.
2442
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
 
2436
  )
2437
 
2438
  if guess_mode and self.do_classifier_free_guidance:
2439
+ # Inferred ControlNet only for the conditional batch.
2440
  # To apply the output of ControlNet to both the unconditional and conditional batches,
2441
  # add 0 to the unconditional batch to keep it unchanged.
2442
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
main/pipeline_stable_diffusion_xl_instandid_img2img.py CHANGED
@@ -1002,7 +1002,7 @@ class StableDiffusionXLInstantIDImg2ImgPipeline(StableDiffusionXLControlNetImg2I
1002
  )
1003
 
1004
  if guess_mode and self.do_classifier_free_guidance:
1005
- # Infered ControlNet only for the conditional batch.
1006
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1007
  # add 0 to the unconditional batch to keep it unchanged.
1008
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
 
1002
  )
1003
 
1004
  if guess_mode and self.do_classifier_free_guidance:
1005
+ # Inferred ControlNet only for the conditional batch.
1006
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1007
  # add 0 to the unconditional batch to keep it unchanged.
1008
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
main/pipeline_stable_diffusion_xl_instantid.py CHANGED
@@ -991,7 +991,7 @@ class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
991
  )
992
 
993
  if guess_mode and self.do_classifier_free_guidance:
994
- # Infered ControlNet only for the conditional batch.
995
  # To apply the output of ControlNet to both the unconditional and conditional batches,
996
  # add 0 to the unconditional batch to keep it unchanged.
997
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
 
991
  )
992
 
993
  if guess_mode and self.do_classifier_free_guidance:
994
+ # Inferred ControlNet only for the conditional batch.
995
  # To apply the output of ControlNet to both the unconditional and conditional batches,
996
  # add 0 to the unconditional batch to keep it unchanged.
997
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
main/rerender_a_video.py CHANGED
@@ -864,7 +864,7 @@ class RerenderAVideoPipeline(StableDiffusionControlNetImg2ImgPipeline):
864
  )
865
 
866
  if guess_mode and do_classifier_free_guidance:
867
- # Infered ControlNet only for the conditional batch.
868
  # To apply the output of ControlNet to both the unconditional and conditional batches,
869
  # add 0 to the unconditional batch to keep it unchanged.
870
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
@@ -1038,7 +1038,7 @@ class RerenderAVideoPipeline(StableDiffusionControlNetImg2ImgPipeline):
1038
  )
1039
 
1040
  if guess_mode and do_classifier_free_guidance:
1041
- # Infered ControlNet only for the conditional batch.
1042
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1043
  # add 0 to the unconditional batch to keep it unchanged.
1044
  down_block_res_samples = [
 
864
  )
865
 
866
  if guess_mode and do_classifier_free_guidance:
867
+ # Inferred ControlNet only for the conditional batch.
868
  # To apply the output of ControlNet to both the unconditional and conditional batches,
869
  # add 0 to the unconditional batch to keep it unchanged.
870
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
 
1038
  )
1039
 
1040
  if guess_mode and do_classifier_free_guidance:
1041
+ # Inferred ControlNet only for the conditional batch.
1042
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1043
  # add 0 to the unconditional batch to keep it unchanged.
1044
  down_block_res_samples = [
main/stable_diffusion_controlnet_reference.py CHANGED
@@ -752,7 +752,7 @@ class StableDiffusionControlNetReferencePipeline(StableDiffusionControlNetPipeli
752
  )
753
 
754
  if guess_mode and do_classifier_free_guidance:
755
- # Infered ControlNet only for the conditional batch.
756
  # To apply the output of ControlNet to both the unconditional and conditional batches,
757
  # add 0 to the unconditional batch to keep it unchanged.
758
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
 
752
  )
753
 
754
  if guess_mode and do_classifier_free_guidance:
755
+ # Inferred ControlNet only for the conditional batch.
756
  # To apply the output of ControlNet to both the unconditional and conditional batches,
757
  # add 0 to the unconditional batch to keep it unchanged.
758
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]