Datasets:

ArXiv:
diffusers-benchmarking-bot commited on
Commit
e3c9269
·
verified ·
1 Parent(s): d89c14c

Upload folder using huggingface_hub

Browse files
main/README.md CHANGED
@@ -33,12 +33,12 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
33
  | Bit Diffusion | Diffusion on discrete data | [Bit Diffusion](#bit-diffusion) | - | [Stuti R.](https://github.com/kingstut) |
34
  | K-Diffusion Stable Diffusion | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py) | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
35
  | Checkpoint Merger Pipeline | Diffusion Pipeline that enables merging of saved model checkpoints | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
36
- | Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Diffusion and compare their results together | [Stable Diffusion Comparison](#stable-diffusion-comparisons) | - | [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
37
  | MagicMix | Diffusion Pipeline for semantic mixing of an image and a text prompt | [MagicMix](#magic-mix) | - | [Partho Das](https://github.com/daspartho) |
38
- | Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | - | [Ray Wang](https://wrong.wang) |
39
- | UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
40
  | UnCLIP Image Interpolation Pipeline | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
41
- | DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227)) | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline) | - | [Aengus (Duc-Anh)](https://github.com/aengusng8) |
42
  | CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | - | [Nipun Jindal](https://github.com/nipunjindal/) |
43
  | TensorRT Stable Diffusion Text to Image Pipeline | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
44
  | EDICT Image Editing Pipeline | Diffusion pipeline for text-guided image editing | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) | [Joqsan Azocar](https://github.com/Joqsan) |
@@ -50,7 +50,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
50
  | IADB Pipeline | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) | [IADB Pipeline](#iadb-pipeline) | - | [Thomas Chambon](https://github.com/tchambon)
51
  | Zero1to3 Pipeline | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) | [Zero1to3 Pipeline](#zero1to3-pipeline) | - | [Xin Kong](https://github.com/kxhit) |
52
  | Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LsqilswLR40XLLcp6XFOl5nKb_wOe26W?usp=sharing) | [Andrew Zhu](https://xhinker.medium.com/) |
53
- | FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | - | [Shauray Singh](https://shauray8.github.io/about_shauray/) |
54
  | sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
55
  | sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
56
  | prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | - | [Umer H. Adil](https://twitter.com/UmerHAdil) |
 
33
  | Bit Diffusion | Diffusion on discrete data | [Bit Diffusion](#bit-diffusion) | - | [Stuti R.](https://github.com/kingstut) |
34
  | K-Diffusion Stable Diffusion | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py) | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
35
  | Checkpoint Merger Pipeline | Diffusion Pipeline that enables merging of saved model checkpoints | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
36
+ | Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Diffusion and compare their results together | [Stable Diffusion Comparison](#stable-diffusion-comparisons) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_comparison.ipynb) | [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
37
  | MagicMix | Diffusion Pipeline for semantic mixing of an image and a text prompt | [MagicMix](#magic-mix) | - | [Partho Das](https://github.com/daspartho) |
38
+ | Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_unclip.ipynb) | [Ray Wang](https://wrong.wang) |
39
+ | UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_text_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
40
  | UnCLIP Image Interpolation Pipeline | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
41
+ | DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227)) | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ddim_noise_comparative_analysis.ipynb)| [Aengus (Duc-Anh)](https://github.com/aengusng8) |
42
  | CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | - | [Nipun Jindal](https://github.com/nipunjindal/) |
43
  | TensorRT Stable Diffusion Text to Image Pipeline | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
44
  | EDICT Image Editing Pipeline | Diffusion pipeline for text-guided image editing | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) | [Joqsan Azocar](https://github.com/Joqsan) |
 
50
  | IADB Pipeline | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) | [IADB Pipeline](#iadb-pipeline) | - | [Thomas Chambon](https://github.com/tchambon)
51
  | Zero1to3 Pipeline | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) | [Zero1to3 Pipeline](#zero1to3-pipeline) | - | [Xin Kong](https://github.com/kxhit) |
52
  | Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LsqilswLR40XLLcp6XFOl5nKb_wOe26W?usp=sharing) | [Andrew Zhu](https://xhinker.medium.com/) |
53
+ | FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
54
  | sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
55
  | sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
56
  | prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | - | [Umer H. Adil](https://twitter.com/UmerHAdil) |
main/lpw_stable_diffusion_xl.py CHANGED
@@ -827,7 +827,9 @@ class SDXLLongPromptWeightingPipeline(
827
  )
828
 
829
  # We are only ALWAYS interested in the pooled output of the final text encoder
830
- pooled_prompt_embeds = prompt_embeds[0]
 
 
831
  prompt_embeds = prompt_embeds.hidden_states[-2]
832
 
833
  prompt_embeds_list.append(prompt_embeds)
@@ -879,7 +881,8 @@ class SDXLLongPromptWeightingPipeline(
879
  output_hidden_states=True,
880
  )
881
  # We are only ALWAYS interested in the pooled output of the final text encoder
882
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
 
883
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
884
 
885
  negative_prompt_embeds_list.append(negative_prompt_embeds)
 
827
  )
828
 
829
  # We are only ALWAYS interested in the pooled output of the final text encoder
830
+ if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
831
+ pooled_prompt_embeds = prompt_embeds[0]
832
+
833
  prompt_embeds = prompt_embeds.hidden_states[-2]
834
 
835
  prompt_embeds_list.append(prompt_embeds)
 
881
  output_hidden_states=True,
882
  )
883
  # We are only ALWAYS interested in the pooled output of the final text encoder
884
+ if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
885
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
886
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
887
 
888
  negative_prompt_embeds_list.append(negative_prompt_embeds)
main/pipeline_demofusion_sdxl.py CHANGED
@@ -290,7 +290,9 @@ class DemoFusionSDXLPipeline(
290
  )
291
 
292
  # We are only ALWAYS interested in the pooled output of the final text encoder
293
- pooled_prompt_embeds = prompt_embeds[0]
 
 
294
  prompt_embeds = prompt_embeds.hidden_states[-2]
295
 
296
  prompt_embeds_list.append(prompt_embeds)
@@ -342,7 +344,8 @@ class DemoFusionSDXLPipeline(
342
  output_hidden_states=True,
343
  )
344
  # We are only ALWAYS interested in the pooled output of the final text encoder
345
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
 
346
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
347
 
348
  negative_prompt_embeds_list.append(negative_prompt_embeds)
 
290
  )
291
 
292
  # We are only ALWAYS interested in the pooled output of the final text encoder
293
+ if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
294
+ pooled_prompt_embeds = prompt_embeds[0]
295
+
296
  prompt_embeds = prompt_embeds.hidden_states[-2]
297
 
298
  prompt_embeds_list.append(prompt_embeds)
 
344
  output_hidden_states=True,
345
  )
346
  # We are only ALWAYS interested in the pooled output of the final text encoder
347
+ if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
348
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
349
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
350
 
351
  negative_prompt_embeds_list.append(negative_prompt_embeds)
main/pipeline_sdxl_style_aligned.py CHANGED
@@ -628,7 +628,9 @@ class StyleAlignedSDXLPipeline(
628
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
629
 
630
  # We are only ALWAYS interested in the pooled output of the final text encoder
631
- pooled_prompt_embeds = prompt_embeds[0]
 
 
632
  if clip_skip is None:
633
  prompt_embeds = prompt_embeds.hidden_states[-2]
634
  else:
@@ -688,7 +690,8 @@ class StyleAlignedSDXLPipeline(
688
  output_hidden_states=True,
689
  )
690
  # We are only ALWAYS interested in the pooled output of the final text encoder
691
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
 
692
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
693
 
694
  negative_prompt_embeds_list.append(negative_prompt_embeds)
 
628
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
629
 
630
  # We are only ALWAYS interested in the pooled output of the final text encoder
631
+ if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
632
+ pooled_prompt_embeds = prompt_embeds[0]
633
+
634
  if clip_skip is None:
635
  prompt_embeds = prompt_embeds.hidden_states[-2]
636
  else:
 
690
  output_hidden_states=True,
691
  )
692
  # We are only ALWAYS interested in the pooled output of the final text encoder
693
+ if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
694
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
695
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
696
 
697
  negative_prompt_embeds_list.append(negative_prompt_embeds)
main/pipeline_stable_diffusion_xl_controlnet_adapter.py CHANGED
@@ -359,7 +359,9 @@ class StableDiffusionXLControlNetAdapterPipeline(
359
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
360
 
361
  # We are only ALWAYS interested in the pooled output of the final text encoder
362
- pooled_prompt_embeds = prompt_embeds[0]
 
 
363
  if clip_skip is None:
364
  prompt_embeds = prompt_embeds.hidden_states[-2]
365
  else:
@@ -419,7 +421,8 @@ class StableDiffusionXLControlNetAdapterPipeline(
419
  output_hidden_states=True,
420
  )
421
  # We are only ALWAYS interested in the pooled output of the final text encoder
422
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
 
423
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
424
 
425
  negative_prompt_embeds_list.append(negative_prompt_embeds)
 
359
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
360
 
361
  # We are only ALWAYS interested in the pooled output of the final text encoder
362
+ if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
363
+ pooled_prompt_embeds = prompt_embeds[0]
364
+
365
  if clip_skip is None:
366
  prompt_embeds = prompt_embeds.hidden_states[-2]
367
  else:
 
421
  output_hidden_states=True,
422
  )
423
  # We are only ALWAYS interested in the pooled output of the final text encoder
424
+ if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
425
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
426
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
427
 
428
  negative_prompt_embeds_list.append(negative_prompt_embeds)
main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py CHANGED
@@ -507,7 +507,9 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
507
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
508
 
509
  # We are only ALWAYS interested in the pooled output of the final text encoder
510
- pooled_prompt_embeds = prompt_embeds[0]
 
 
511
  if clip_skip is None:
512
  prompt_embeds = prompt_embeds.hidden_states[-2]
513
  else:
@@ -567,7 +569,8 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
567
  output_hidden_states=True,
568
  )
569
  # We are only ALWAYS interested in the pooled output of the final text encoder
570
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
 
571
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
572
 
573
  negative_prompt_embeds_list.append(negative_prompt_embeds)
 
507
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
508
 
509
  # We are only ALWAYS interested in the pooled output of the final text encoder
510
+ if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
511
+ pooled_prompt_embeds = prompt_embeds[0]
512
+
513
  if clip_skip is None:
514
  prompt_embeds = prompt_embeds.hidden_states[-2]
515
  else:
 
569
  output_hidden_states=True,
570
  )
571
  # We are only ALWAYS interested in the pooled output of the final text encoder
572
+ if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
573
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
574
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
575
 
576
  negative_prompt_embeds_list.append(negative_prompt_embeds)
main/pipeline_stable_diffusion_xl_differential_img2img.py CHANGED
@@ -394,7 +394,9 @@ class StableDiffusionXLDifferentialImg2ImgPipeline(
394
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
395
 
396
  # We are only ALWAYS interested in the pooled output of the final text encoder
397
- pooled_prompt_embeds = prompt_embeds[0]
 
 
398
  if clip_skip is None:
399
  prompt_embeds = prompt_embeds.hidden_states[-2]
400
  else:
@@ -454,7 +456,8 @@ class StableDiffusionXLDifferentialImg2ImgPipeline(
454
  output_hidden_states=True,
455
  )
456
  # We are only ALWAYS interested in the pooled output of the final text encoder
457
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
 
458
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
459
 
460
  negative_prompt_embeds_list.append(negative_prompt_embeds)
 
394
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
395
 
396
  # We are only ALWAYS interested in the pooled output of the final text encoder
397
+ if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
398
+ pooled_prompt_embeds = prompt_embeds[0]
399
+
400
  if clip_skip is None:
401
  prompt_embeds = prompt_embeds.hidden_states[-2]
402
  else:
 
456
  output_hidden_states=True,
457
  )
458
  # We are only ALWAYS interested in the pooled output of the final text encoder
459
+ if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
460
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
461
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
462
 
463
  negative_prompt_embeds_list.append(negative_prompt_embeds)
main/pipeline_stable_diffusion_xl_ipex.py CHANGED
@@ -390,7 +390,9 @@ class StableDiffusionXLPipelineIpex(
390
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
391
 
392
  # We are only ALWAYS interested in the pooled output of the final text encoder
393
- pooled_prompt_embeds = prompt_embeds[0]
 
 
394
  if clip_skip is None:
395
  prompt_embeds = prompt_embeds.hidden_states[-2]
396
  else:
@@ -450,7 +452,8 @@ class StableDiffusionXLPipelineIpex(
450
  output_hidden_states=True,
451
  )
452
  # We are only ALWAYS interested in the pooled output of the final text encoder
453
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
 
454
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
455
 
456
  negative_prompt_embeds_list.append(negative_prompt_embeds)
 
390
  prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
391
 
392
  # We are only ALWAYS interested in the pooled output of the final text encoder
393
+ if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
394
+ pooled_prompt_embeds = prompt_embeds[0]
395
+
396
  if clip_skip is None:
397
  prompt_embeds = prompt_embeds.hidden_states[-2]
398
  else:
 
452
  output_hidden_states=True,
453
  )
454
  # We are only ALWAYS interested in the pooled output of the final text encoder
455
+ if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
456
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
457
  negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
458
 
459
  negative_prompt_embeds_list.append(negative_prompt_embeds)