Datasets:

ArXiv:
diffusers-benchmarking-bot commited on
Commit
94cc674
·
verified ·
1 Parent(s): 2533cde

Upload folder using huggingface_hub

Browse files
main/README_community_scripts.md CHANGED
@@ -241,7 +241,45 @@ from diffusers import StableDiffusionPipeline
241
  from diffusers.callbacks import PipelineCallback, MultiPipelineCallbacks
242
  from diffusers.configuration_utils import register_to_config
243
  import torch
244
- from typing import Any, Dict, Optional
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
 
246
 
247
  pipeline: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
@@ -253,28 +291,73 @@ pipeline: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
253
  pipeline.safety_checker = None
254
  pipeline.requires_safety_checker = False
255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256
 
257
- class SDPromptScheduleCallback(PipelineCallback):
 
 
 
 
 
 
 
 
258
  @register_to_config
259
  def __init__(
260
  self,
261
- prompt: str,
262
- negative_prompt: Optional[str] = None,
263
- num_images_per_prompt: int = 1,
264
- cutoff_step_ratio=1.0,
265
  cutoff_step_index=None,
266
  ):
267
  super().__init__(
268
  cutoff_step_ratio=cutoff_step_ratio, cutoff_step_index=cutoff_step_index
269
  )
270
 
271
- tensor_inputs = ["prompt_embeds"]
272
 
273
  def callback_fn(
274
  self, pipeline, step_index, timestep, callback_kwargs
275
  ) -> Dict[str, Any]:
276
  cutoff_step_ratio = self.config.cutoff_step_ratio
277
  cutoff_step_index = self.config.cutoff_step_index
 
 
 
 
 
 
 
 
 
 
 
 
278
 
279
  # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
280
  cutoff_step = (
@@ -284,34 +367,73 @@ class SDPromptScheduleCallback(PipelineCallback):
284
  )
285
 
286
  if step_index == cutoff_step:
287
- prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt(
288
- prompt=self.config.prompt,
289
- negative_prompt=self.config.negative_prompt,
290
- device=pipeline._execution_device,
291
- num_images_per_prompt=self.config.num_images_per_prompt,
292
- do_classifier_free_guidance=pipeline.do_classifier_free_guidance,
293
- )
294
  if pipeline.do_classifier_free_guidance:
295
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
 
 
296
  callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
 
 
297
  return callback_kwargs
298
 
299
- callback = MultiPipelineCallbacks(
300
- [
301
- SDPromptScheduleCallback(
302
- prompt="Official portrait of a smiling world war ii general, female, cheerful, happy, detailed face, 20th century, highly detailed, cinematic lighting, digital art painting by Greg Rutkowski",
303
- negative_prompt="Deformed, ugly, bad anatomy",
304
- cutoff_step_ratio=0.25,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305
  )
306
- ]
307
- )
 
 
308
 
309
  image = pipeline(
310
- prompt="Official portrait of a smiling world war ii general, male, cheerful, happy, detailed face, 20th century, highly detailed, cinematic lighting, digital art painting by Greg Rutkowski",
311
- negative_prompt="Deformed, ugly, bad anatomy",
312
  callback_on_step_end=callback,
313
- callback_on_step_end_tensor_inputs=["prompt_embeds"],
 
 
 
 
314
  ).images[0]
315
- torch.cuda.empty_cache()
316
- image.save('image.png')
317
  ```
 
241
  from diffusers.callbacks import PipelineCallback, MultiPipelineCallbacks
242
  from diffusers.configuration_utils import register_to_config
243
  import torch
244
+ from typing import Any, Dict, Tuple, Union
245
+
246
+
247
+ class SDPromptSchedulingCallback(PipelineCallback):
248
+ @register_to_config
249
+ def __init__(
250
+ self,
251
+ encoded_prompt: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
252
+ cutoff_step_ratio=None,
253
+ cutoff_step_index=None,
254
+ ):
255
+ super().__init__(
256
+ cutoff_step_ratio=cutoff_step_ratio, cutoff_step_index=cutoff_step_index
257
+ )
258
+
259
+ tensor_inputs = ["prompt_embeds"]
260
+
261
+ def callback_fn(
262
+ self, pipeline, step_index, timestep, callback_kwargs
263
+ ) -> Dict[str, Any]:
264
+ cutoff_step_ratio = self.config.cutoff_step_ratio
265
+ cutoff_step_index = self.config.cutoff_step_index
266
+ if isinstance(self.config.encoded_prompt, tuple):
267
+ prompt_embeds, negative_prompt_embeds = self.config.encoded_prompt
268
+ else:
269
+ prompt_embeds = self.config.encoded_prompt
270
+
271
+ # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
272
+ cutoff_step = (
273
+ cutoff_step_index
274
+ if cutoff_step_index is not None
275
+ else int(pipeline.num_timesteps * cutoff_step_ratio)
276
+ )
277
+
278
+ if step_index == cutoff_step:
279
+ if pipeline.do_classifier_free_guidance:
280
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
281
+ callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
282
+ return callback_kwargs
283
 
284
 
285
  pipeline: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
 
291
  pipeline.safety_checker = None
292
  pipeline.requires_safety_checker = False
293
 
294
+ callback = MultiPipelineCallbacks(
295
+ [
296
+ SDPromptSchedulingCallback(
297
+ encoded_prompt=pipeline.encode_prompt(
298
+ prompt=f"prompt {index}",
299
+ negative_prompt=f"negative prompt {index}",
300
+ device=pipeline._execution_device,
301
+ num_images_per_prompt=1,
302
+ # pipeline.do_classifier_free_guidance can't be accessed until after pipeline is ran
303
+ do_classifier_free_guidance=True,
304
+ ),
305
+ cutoff_step_index=index,
306
+ ) for index in range(1, 20)
307
+ ]
308
+ )
309
+
310
+ image = pipeline(
311
+ prompt="prompt"
312
+ negative_prompt="negative prompt",
313
+ callback_on_step_end=callback,
314
+ callback_on_step_end_tensor_inputs=["prompt_embeds"],
315
+ ).images[0]
316
+ torch.cuda.empty_cache()
317
+ image.save('image.png')
318
+ ```
319
 
320
+ ```python
321
+ from diffusers import StableDiffusionXLPipeline
322
+ from diffusers.callbacks import PipelineCallback, MultiPipelineCallbacks
323
+ from diffusers.configuration_utils import register_to_config
324
+ import torch
325
+ from typing import Any, Dict, Tuple, Union
326
+
327
+
328
+ class SDXLPromptSchedulingCallback(PipelineCallback):
329
  @register_to_config
330
  def __init__(
331
  self,
332
+ encoded_prompt: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
333
+ add_text_embeds: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
334
+ add_time_ids: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
335
+ cutoff_step_ratio=None,
336
  cutoff_step_index=None,
337
  ):
338
  super().__init__(
339
  cutoff_step_ratio=cutoff_step_ratio, cutoff_step_index=cutoff_step_index
340
  )
341
 
342
+ tensor_inputs = ["prompt_embeds", "add_text_embeds", "add_time_ids"]
343
 
344
  def callback_fn(
345
  self, pipeline, step_index, timestep, callback_kwargs
346
  ) -> Dict[str, Any]:
347
  cutoff_step_ratio = self.config.cutoff_step_ratio
348
  cutoff_step_index = self.config.cutoff_step_index
349
+ if isinstance(self.config.encoded_prompt, tuple):
350
+ prompt_embeds, negative_prompt_embeds = self.config.encoded_prompt
351
+ else:
352
+ prompt_embeds = self.config.encoded_prompt
353
+ if isinstance(self.config.add_text_embeds, tuple):
354
+ add_text_embeds, negative_add_text_embeds = self.config.add_text_embeds
355
+ else:
356
+ add_text_embeds = self.config.add_text_embeds
357
+ if isinstance(self.config.add_time_ids, tuple):
358
+ add_time_ids, negative_add_time_ids = self.config.add_time_ids
359
+ else:
360
+ add_time_ids = self.config.add_time_ids
361
 
362
  # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
363
  cutoff_step = (
 
367
  )
368
 
369
  if step_index == cutoff_step:
 
 
 
 
 
 
 
370
  if pipeline.do_classifier_free_guidance:
371
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
372
+ add_text_embeds = torch.cat([negative_add_text_embeds, add_text_embeds])
373
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids])
374
  callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
375
+ callback_kwargs[self.tensor_inputs[1]] = add_text_embeds
376
+ callback_kwargs[self.tensor_inputs[2]] = add_time_ids
377
  return callback_kwargs
378
 
379
+
380
+ pipeline: StableDiffusionXLPipeline = StableDiffusionXLPipeline.from_pretrained(
381
+ "stabilityai/stable-diffusion-xl-base-1.0",
382
+ torch_dtype=torch.float16,
383
+ variant="fp16",
384
+ use_safetensors=True,
385
+ ).to("cuda")
386
+
387
+ callbacks = []
388
+ for index in range(1, 20):
389
+ (
390
+ prompt_embeds,
391
+ negative_prompt_embeds,
392
+ pooled_prompt_embeds,
393
+ negative_pooled_prompt_embeds,
394
+ ) = pipeline.encode_prompt(
395
+ prompt=f"prompt {index}",
396
+ negative_prompt=f"prompt {index}",
397
+ device=pipeline._execution_device,
398
+ num_images_per_prompt=1,
399
+ # pipeline.do_classifier_free_guidance can't be accessed until after pipeline is ran
400
+ do_classifier_free_guidance=True,
401
+ )
402
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
403
+ add_time_ids = pipeline._get_add_time_ids(
404
+ (1024, 1024),
405
+ (0, 0),
406
+ (1024, 1024),
407
+ dtype=prompt_embeds.dtype,
408
+ text_encoder_projection_dim=text_encoder_projection_dim,
409
+ )
410
+ negative_add_time_ids = pipeline._get_add_time_ids(
411
+ (1024, 1024),
412
+ (0, 0),
413
+ (1024, 1024),
414
+ dtype=prompt_embeds.dtype,
415
+ text_encoder_projection_dim=text_encoder_projection_dim,
416
+ )
417
+ callbacks.append(
418
+ SDXLPromptSchedulingCallback(
419
+ encoded_prompt=(prompt_embeds, negative_prompt_embeds),
420
+ add_text_embeds=(pooled_prompt_embeds, negative_pooled_prompt_embeds),
421
+ add_time_ids=(add_time_ids, negative_add_time_ids),
422
+ cutoff_step_index=index,
423
  )
424
+ )
425
+
426
+
427
+ callback = MultiPipelineCallbacks(callbacks)
428
 
429
  image = pipeline(
430
+ prompt="prompt",
431
+ negative_prompt="negative prompt",
432
  callback_on_step_end=callback,
433
+ callback_on_step_end_tensor_inputs=[
434
+ "prompt_embeds",
435
+ "add_text_embeds",
436
+ "add_time_ids",
437
+ ],
438
  ).images[0]
 
 
439
  ```
main/pipeline_flux_rf_inversion.py CHANGED
@@ -648,6 +648,8 @@ class RFInversionFluxPipeline(
648
  height: Optional[int] = None,
649
  width: Optional[int] = None,
650
  eta: float = 1.0,
 
 
651
  strength: float = 1.0,
652
  start_timestep: float = 0,
653
  stop_timestep: float = 0.25,
@@ -880,12 +882,9 @@ class RFInversionFluxPipeline(
880
  v_t = -noise_pred
881
  v_t_cond = (y_0 - latents) / (1 - t_i)
882
  eta_t = eta if start_timestep <= i < stop_timestep else 0.0
883
- if start_timestep <= i < stop_timestep:
884
- # controlled vector field
885
- v_hat_t = v_t + eta * (v_t_cond - v_t)
886
-
887
- else:
888
- v_hat_t = v_t
889
 
890
  # SDE Eq: 17 from https://arxiv.org/pdf/2410.10792
891
  latents = latents + v_hat_t * (sigmas[i] - sigmas[i + 1])
 
648
  height: Optional[int] = None,
649
  width: Optional[int] = None,
650
  eta: float = 1.0,
651
+ decay_eta: Optional[bool] = False,
652
+ eta_decay_power: Optional[float] = 1.0,
653
  strength: float = 1.0,
654
  start_timestep: float = 0,
655
  stop_timestep: float = 0.25,
 
882
  v_t = -noise_pred
883
  v_t_cond = (y_0 - latents) / (1 - t_i)
884
  eta_t = eta if start_timestep <= i < stop_timestep else 0.0
885
+ if decay_eta:
886
+ eta_t = eta_t * (1 - i / num_inference_steps) ** eta_decay_power # Decay eta over the loop
887
+ v_hat_t = v_t + eta_t * (v_t_cond - v_t)
 
 
 
888
 
889
  # SDE Eq: 17 from https://arxiv.org/pdf/2410.10792
890
  latents = latents + v_hat_t * (sigmas[i] - sigmas[i + 1])