Diffusers Bot
commited on
Upload folder using huggingface_hub
Browse files- main/README.md +4 -4
- main/clip_guided_images_mixing_stable_diffusion.py +2 -2
- main/clip_guided_stable_diffusion_img2img.py +4 -4
- main/mixture_canvas.py +2 -2
- main/mixture_tiling.py +2 -2
- main/pipeline_stable_diffusion_xl_controlnet_adapter.py +1 -1
- main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py +1 -1
- main/pipeline_zero1to3.py +3 -3
- main/regional_prompting_stable_diffusion.py +2 -2
- main/stable_diffusion_ipex.py +3 -3
- main/stable_diffusion_tensorrt_img2img.py +3 -3
- main/stable_diffusion_tensorrt_inpaint.py +3 -3
- main/stable_diffusion_tensorrt_txt2img.py +3 -3
main/README.md
CHANGED
@@ -1435,9 +1435,9 @@ import requests
|
|
1435 |
import torch
|
1436 |
from diffusers import DiffusionPipeline
|
1437 |
from PIL import Image
|
1438 |
-
from transformers import
|
1439 |
|
1440 |
-
feature_extractor =
|
1441 |
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
|
1442 |
)
|
1443 |
clip_model = CLIPModel.from_pretrained(
|
@@ -2122,7 +2122,7 @@ import torch
|
|
2122 |
import open_clip
|
2123 |
from open_clip import SimpleTokenizer
|
2124 |
from diffusers import DiffusionPipeline
|
2125 |
-
from transformers import
|
2126 |
|
2127 |
|
2128 |
def download_image(url):
|
@@ -2130,7 +2130,7 @@ def download_image(url):
|
|
2130 |
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
2131 |
|
2132 |
# Loading additional models
|
2133 |
-
feature_extractor =
|
2134 |
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
|
2135 |
)
|
2136 |
clip_model = CLIPModel.from_pretrained(
|
|
|
1435 |
import torch
|
1436 |
from diffusers import DiffusionPipeline
|
1437 |
from PIL import Image
|
1438 |
+
from transformers import CLIPImageProcessor, CLIPModel
|
1439 |
|
1440 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(
|
1441 |
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
|
1442 |
)
|
1443 |
clip_model = CLIPModel.from_pretrained(
|
|
|
2122 |
import open_clip
|
2123 |
from open_clip import SimpleTokenizer
|
2124 |
from diffusers import DiffusionPipeline
|
2125 |
+
from transformers import CLIPImageProcessor, CLIPModel
|
2126 |
|
2127 |
|
2128 |
def download_image(url):
|
|
|
2130 |
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
2131 |
|
2132 |
# Loading additional models
|
2133 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(
|
2134 |
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
|
2135 |
)
|
2136 |
clip_model = CLIPModel.from_pretrained(
|
main/clip_guided_images_mixing_stable_diffusion.py
CHANGED
@@ -7,7 +7,7 @@ import PIL.Image
|
|
7 |
import torch
|
8 |
from torch.nn import functional as F
|
9 |
from torchvision import transforms
|
10 |
-
from transformers import
|
11 |
|
12 |
from diffusers import (
|
13 |
AutoencoderKL,
|
@@ -86,7 +86,7 @@ class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline, StableDiffusionMi
|
|
86 |
tokenizer: CLIPTokenizer,
|
87 |
unet: UNet2DConditionModel,
|
88 |
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
|
89 |
-
feature_extractor:
|
90 |
coca_model=None,
|
91 |
coca_tokenizer=None,
|
92 |
coca_transform=None,
|
|
|
7 |
import torch
|
8 |
from torch.nn import functional as F
|
9 |
from torchvision import transforms
|
10 |
+
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer
|
11 |
|
12 |
from diffusers import (
|
13 |
AutoencoderKL,
|
|
|
86 |
tokenizer: CLIPTokenizer,
|
87 |
unet: UNet2DConditionModel,
|
88 |
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
|
89 |
+
feature_extractor: CLIPImageProcessor,
|
90 |
coca_model=None,
|
91 |
coca_tokenizer=None,
|
92 |
coca_transform=None,
|
main/clip_guided_stable_diffusion_img2img.py
CHANGED
@@ -7,7 +7,7 @@ import torch
|
|
7 |
from torch import nn
|
8 |
from torch.nn import functional as F
|
9 |
from torchvision import transforms
|
10 |
-
from transformers import
|
11 |
|
12 |
from diffusers import (
|
13 |
AutoencoderKL,
|
@@ -32,9 +32,9 @@ EXAMPLE_DOC_STRING = """
|
|
32 |
import torch
|
33 |
from diffusers import DiffusionPipeline
|
34 |
from PIL import Image
|
35 |
-
from transformers import
|
36 |
|
37 |
-
feature_extractor =
|
38 |
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
|
39 |
)
|
40 |
clip_model = CLIPModel.from_pretrained(
|
@@ -139,7 +139,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
|
139 |
tokenizer: CLIPTokenizer,
|
140 |
unet: UNet2DConditionModel,
|
141 |
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
|
142 |
-
feature_extractor:
|
143 |
):
|
144 |
super().__init__()
|
145 |
self.register_modules(
|
|
|
7 |
from torch import nn
|
8 |
from torch.nn import functional as F
|
9 |
from torchvision import transforms
|
10 |
+
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer
|
11 |
|
12 |
from diffusers import (
|
13 |
AutoencoderKL,
|
|
|
32 |
import torch
|
33 |
from diffusers import DiffusionPipeline
|
34 |
from PIL import Image
|
35 |
+
from transformers import CLIPImageProcessor, CLIPModel
|
36 |
|
37 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(
|
38 |
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
|
39 |
)
|
40 |
clip_model = CLIPModel.from_pretrained(
|
|
|
139 |
tokenizer: CLIPTokenizer,
|
140 |
unet: UNet2DConditionModel,
|
141 |
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
|
142 |
+
feature_extractor: CLIPImageProcessor,
|
143 |
):
|
144 |
super().__init__()
|
145 |
self.register_modules(
|
main/mixture_canvas.py
CHANGED
@@ -9,7 +9,7 @@ import torch
|
|
9 |
from numpy import exp, pi, sqrt
|
10 |
from torchvision.transforms.functional import resize
|
11 |
from tqdm.auto import tqdm
|
12 |
-
from transformers import
|
13 |
|
14 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
15 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
@@ -275,7 +275,7 @@ class StableDiffusionCanvasPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
275 |
unet: UNet2DConditionModel,
|
276 |
scheduler: Union[DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler],
|
277 |
safety_checker: StableDiffusionSafetyChecker,
|
278 |
-
feature_extractor:
|
279 |
):
|
280 |
super().__init__()
|
281 |
self.register_modules(
|
|
|
9 |
from numpy import exp, pi, sqrt
|
10 |
from torchvision.transforms.functional import resize
|
11 |
from tqdm.auto import tqdm
|
12 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
13 |
|
14 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
15 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
|
275 |
unet: UNet2DConditionModel,
|
276 |
scheduler: Union[DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler],
|
277 |
safety_checker: StableDiffusionSafetyChecker,
|
278 |
+
feature_extractor: CLIPImageProcessor,
|
279 |
):
|
280 |
super().__init__()
|
281 |
self.register_modules(
|
main/mixture_tiling.py
CHANGED
@@ -15,7 +15,7 @@ from diffusers.utils import logging
|
|
15 |
|
16 |
try:
|
17 |
from ligo.segments import segment
|
18 |
-
from transformers import
|
19 |
except ImportError:
|
20 |
raise ImportError("Please install transformers and ligo-segments to use the mixture pipeline")
|
21 |
|
@@ -144,7 +144,7 @@ class StableDiffusionTilingPipeline(DiffusionPipeline, StableDiffusionExtrasMixi
|
|
144 |
unet: UNet2DConditionModel,
|
145 |
scheduler: Union[DDIMScheduler, PNDMScheduler],
|
146 |
safety_checker: StableDiffusionSafetyChecker,
|
147 |
-
feature_extractor:
|
148 |
):
|
149 |
super().__init__()
|
150 |
self.register_modules(
|
|
|
15 |
|
16 |
try:
|
17 |
from ligo.segments import segment
|
18 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
19 |
except ImportError:
|
20 |
raise ImportError("Please install transformers and ligo-segments to use the mixture pipeline")
|
21 |
|
|
|
144 |
unet: UNet2DConditionModel,
|
145 |
scheduler: Union[DDIMScheduler, PNDMScheduler],
|
146 |
safety_checker: StableDiffusionSafetyChecker,
|
147 |
+
feature_extractor: CLIPImageProcessor,
|
148 |
):
|
149 |
super().__init__()
|
150 |
self.register_modules(
|
main/pipeline_stable_diffusion_xl_controlnet_adapter.py
CHANGED
@@ -189,7 +189,7 @@ class StableDiffusionXLControlNetAdapterPipeline(
|
|
189 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
190 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
191 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
192 |
-
feature_extractor ([`
|
193 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
194 |
"""
|
195 |
|
|
|
189 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
190 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
191 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
192 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
193 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
194 |
"""
|
195 |
|
main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py
CHANGED
@@ -332,7 +332,7 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
|
|
332 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
333 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
334 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
335 |
-
feature_extractor ([`
|
336 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
337 |
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
338 |
Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
|
|
|
332 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
333 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
334 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
335 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
336 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
337 |
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
338 |
Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
|
main/pipeline_zero1to3.py
CHANGED
@@ -9,7 +9,7 @@ import numpy as np
|
|
9 |
import PIL.Image
|
10 |
import torch
|
11 |
from packaging import version
|
12 |
-
from transformers import
|
13 |
|
14 |
# from ...configuration_utils import FrozenDict
|
15 |
# from ...models import AutoencoderKL, UNet2DConditionModel
|
@@ -87,7 +87,7 @@ class Zero1to3StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
87 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
88 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
89 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
90 |
-
feature_extractor ([`
|
91 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
92 |
cc_projection ([`CCProjection`]):
|
93 |
Projection layer to project the concated CLIP features and pose embeddings to the original CLIP feature size.
|
@@ -102,7 +102,7 @@ class Zero1to3StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
102 |
unet: UNet2DConditionModel,
|
103 |
scheduler: KarrasDiffusionSchedulers,
|
104 |
safety_checker: StableDiffusionSafetyChecker,
|
105 |
-
feature_extractor:
|
106 |
cc_projection: CCProjection,
|
107 |
requires_safety_checker: bool = True,
|
108 |
):
|
|
|
9 |
import PIL.Image
|
10 |
import torch
|
11 |
from packaging import version
|
12 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
13 |
|
14 |
# from ...configuration_utils import FrozenDict
|
15 |
# from ...models import AutoencoderKL, UNet2DConditionModel
|
|
|
87 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
88 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
89 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
90 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
91 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
92 |
cc_projection ([`CCProjection`]):
|
93 |
Projection layer to project the concated CLIP features and pose embeddings to the original CLIP feature size.
|
|
|
102 |
unet: UNet2DConditionModel,
|
103 |
scheduler: KarrasDiffusionSchedulers,
|
104 |
safety_checker: StableDiffusionSafetyChecker,
|
105 |
+
feature_extractor: CLIPImageProcessor,
|
106 |
cc_projection: CCProjection,
|
107 |
requires_safety_checker: bool = True,
|
108 |
):
|
main/regional_prompting_stable_diffusion.py
CHANGED
@@ -3,7 +3,7 @@ from typing import Dict, Optional
|
|
3 |
|
4 |
import torch
|
5 |
import torchvision.transforms.functional as FF
|
6 |
-
from transformers import
|
7 |
|
8 |
from diffusers import StableDiffusionPipeline
|
9 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
@@ -69,7 +69,7 @@ class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
|
|
69 |
unet: UNet2DConditionModel,
|
70 |
scheduler: KarrasDiffusionSchedulers,
|
71 |
safety_checker: StableDiffusionSafetyChecker,
|
72 |
-
feature_extractor:
|
73 |
requires_safety_checker: bool = True,
|
74 |
):
|
75 |
super().__init__(
|
|
|
3 |
|
4 |
import torch
|
5 |
import torchvision.transforms.functional as FF
|
6 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
7 |
|
8 |
from diffusers import StableDiffusionPipeline
|
9 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
69 |
unet: UNet2DConditionModel,
|
70 |
scheduler: KarrasDiffusionSchedulers,
|
71 |
safety_checker: StableDiffusionSafetyChecker,
|
72 |
+
feature_extractor: CLIPImageProcessor,
|
73 |
requires_safety_checker: bool = True,
|
74 |
):
|
75 |
super().__init__(
|
main/stable_diffusion_ipex.py
CHANGED
@@ -18,7 +18,7 @@ from typing import Any, Callable, Dict, List, Optional, Union
|
|
18 |
import intel_extension_for_pytorch as ipex
|
19 |
import torch
|
20 |
from packaging import version
|
21 |
-
from transformers import
|
22 |
|
23 |
from diffusers.configuration_utils import FrozenDict
|
24 |
from diffusers.loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
@@ -86,7 +86,7 @@ class StableDiffusionIPEXPipeline(
|
|
86 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
87 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
88 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
89 |
-
feature_extractor ([`
|
90 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
91 |
"""
|
92 |
|
@@ -100,7 +100,7 @@ class StableDiffusionIPEXPipeline(
|
|
100 |
unet: UNet2DConditionModel,
|
101 |
scheduler: KarrasDiffusionSchedulers,
|
102 |
safety_checker: StableDiffusionSafetyChecker,
|
103 |
-
feature_extractor:
|
104 |
requires_safety_checker: bool = True,
|
105 |
):
|
106 |
super().__init__()
|
|
|
18 |
import intel_extension_for_pytorch as ipex
|
19 |
import torch
|
20 |
from packaging import version
|
21 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
22 |
|
23 |
from diffusers.configuration_utils import FrozenDict
|
24 |
from diffusers.loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
|
|
86 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
87 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
88 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
89 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
90 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
91 |
"""
|
92 |
|
|
|
100 |
unet: UNet2DConditionModel,
|
101 |
scheduler: KarrasDiffusionSchedulers,
|
102 |
safety_checker: StableDiffusionSafetyChecker,
|
103 |
+
feature_extractor: CLIPImageProcessor,
|
104 |
requires_safety_checker: bool = True,
|
105 |
):
|
106 |
super().__init__()
|
main/stable_diffusion_tensorrt_img2img.py
CHANGED
@@ -42,7 +42,7 @@ from polygraphy.backend.trt import (
|
|
42 |
network_from_onnx_path,
|
43 |
save_engine,
|
44 |
)
|
45 |
-
from transformers import
|
46 |
|
47 |
from diffusers import DiffusionPipeline
|
48 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
@@ -679,7 +679,7 @@ class TensorRTStableDiffusionImg2ImgPipeline(DiffusionPipeline):
|
|
679 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
680 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
681 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
682 |
-
feature_extractor ([`
|
683 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
684 |
"""
|
685 |
|
@@ -693,7 +693,7 @@ class TensorRTStableDiffusionImg2ImgPipeline(DiffusionPipeline):
|
|
693 |
unet: UNet2DConditionModel,
|
694 |
scheduler: DDIMScheduler,
|
695 |
safety_checker: StableDiffusionSafetyChecker,
|
696 |
-
feature_extractor:
|
697 |
image_encoder: CLIPVisionModelWithProjection = None,
|
698 |
requires_safety_checker: bool = True,
|
699 |
stages=["clip", "unet", "vae", "vae_encoder"],
|
|
|
42 |
network_from_onnx_path,
|
43 |
save_engine,
|
44 |
)
|
45 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
46 |
|
47 |
from diffusers import DiffusionPipeline
|
48 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
|
|
679 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
680 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
681 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
682 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
683 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
684 |
"""
|
685 |
|
|
|
693 |
unet: UNet2DConditionModel,
|
694 |
scheduler: DDIMScheduler,
|
695 |
safety_checker: StableDiffusionSafetyChecker,
|
696 |
+
feature_extractor: CLIPImageProcessor,
|
697 |
image_encoder: CLIPVisionModelWithProjection = None,
|
698 |
requires_safety_checker: bool = True,
|
699 |
stages=["clip", "unet", "vae", "vae_encoder"],
|
main/stable_diffusion_tensorrt_inpaint.py
CHANGED
@@ -42,7 +42,7 @@ from polygraphy.backend.trt import (
|
|
42 |
network_from_onnx_path,
|
43 |
save_engine,
|
44 |
)
|
45 |
-
from transformers import
|
46 |
|
47 |
from diffusers import DiffusionPipeline
|
48 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
@@ -683,7 +683,7 @@ class TensorRTStableDiffusionInpaintPipeline(DiffusionPipeline):
|
|
683 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
684 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
685 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
686 |
-
feature_extractor ([`
|
687 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
688 |
"""
|
689 |
|
@@ -697,7 +697,7 @@ class TensorRTStableDiffusionInpaintPipeline(DiffusionPipeline):
|
|
697 |
unet: UNet2DConditionModel,
|
698 |
scheduler: DDIMScheduler,
|
699 |
safety_checker: StableDiffusionSafetyChecker,
|
700 |
-
feature_extractor:
|
701 |
image_encoder: CLIPVisionModelWithProjection = None,
|
702 |
requires_safety_checker: bool = True,
|
703 |
stages=["clip", "unet", "vae", "vae_encoder"],
|
|
|
42 |
network_from_onnx_path,
|
43 |
save_engine,
|
44 |
)
|
45 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
46 |
|
47 |
from diffusers import DiffusionPipeline
|
48 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
|
|
683 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
684 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
685 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
686 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
687 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
688 |
"""
|
689 |
|
|
|
697 |
unet: UNet2DConditionModel,
|
698 |
scheduler: DDIMScheduler,
|
699 |
safety_checker: StableDiffusionSafetyChecker,
|
700 |
+
feature_extractor: CLIPImageProcessor,
|
701 |
image_encoder: CLIPVisionModelWithProjection = None,
|
702 |
requires_safety_checker: bool = True,
|
703 |
stages=["clip", "unet", "vae", "vae_encoder"],
|
main/stable_diffusion_tensorrt_txt2img.py
CHANGED
@@ -42,7 +42,7 @@ from polygraphy.backend.trt import (
|
|
42 |
network_from_onnx_path,
|
43 |
save_engine,
|
44 |
)
|
45 |
-
from transformers import
|
46 |
|
47 |
from diffusers import DiffusionPipeline
|
48 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
@@ -595,7 +595,7 @@ class TensorRTStableDiffusionPipeline(DiffusionPipeline):
|
|
595 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
596 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
597 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
598 |
-
feature_extractor ([`
|
599 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
600 |
"""
|
601 |
|
@@ -609,7 +609,7 @@ class TensorRTStableDiffusionPipeline(DiffusionPipeline):
|
|
609 |
unet: UNet2DConditionModel,
|
610 |
scheduler: DDIMScheduler,
|
611 |
safety_checker: StableDiffusionSafetyChecker,
|
612 |
-
feature_extractor:
|
613 |
image_encoder: CLIPVisionModelWithProjection = None,
|
614 |
requires_safety_checker: bool = True,
|
615 |
stages=["clip", "unet", "vae"],
|
|
|
42 |
network_from_onnx_path,
|
43 |
save_engine,
|
44 |
)
|
45 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
46 |
|
47 |
from diffusers import DiffusionPipeline
|
48 |
from diffusers.configuration_utils import FrozenDict, deprecate
|
|
|
595 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
596 |
Classification module that estimates whether generated images could be considered offensive or harmful.
|
597 |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
598 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
599 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
600 |
"""
|
601 |
|
|
|
609 |
unet: UNet2DConditionModel,
|
610 |
scheduler: DDIMScheduler,
|
611 |
safety_checker: StableDiffusionSafetyChecker,
|
612 |
+
feature_extractor: CLIPImageProcessor,
|
613 |
image_encoder: CLIPVisionModelWithProjection = None,
|
614 |
requires_safety_checker: bool = True,
|
615 |
stages=["clip", "unet", "vae"],
|