Delete clip_guided_images_mixing_stable_diffusion.py
Browse files
clip_guided_images_mixing_stable_diffusion.py
DELETED
@@ -1,445 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
import inspect
|
3 |
-
from typing import Optional, Union
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import PIL.Image
|
7 |
-
import torch
|
8 |
-
from torch.nn import functional as F
|
9 |
-
from torchvision import transforms
|
10 |
-
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
|
11 |
-
|
12 |
-
from diffusers import (
|
13 |
-
AutoencoderKL,
|
14 |
-
DDIMScheduler,
|
15 |
-
DPMSolverMultistepScheduler,
|
16 |
-
LMSDiscreteScheduler,
|
17 |
-
PNDMScheduler,
|
18 |
-
UNet2DConditionModel,
|
19 |
-
)
|
20 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
21 |
-
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
22 |
-
from diffusers.utils import PIL_INTERPOLATION
|
23 |
-
from diffusers.utils.torch_utils import randn_tensor
|
24 |
-
|
25 |
-
|
26 |
-
def preprocess(image, w, h):
|
27 |
-
if isinstance(image, torch.Tensor):
|
28 |
-
return image
|
29 |
-
elif isinstance(image, PIL.Image.Image):
|
30 |
-
image = [image]
|
31 |
-
|
32 |
-
if isinstance(image[0], PIL.Image.Image):
|
33 |
-
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
|
34 |
-
image = np.concatenate(image, axis=0)
|
35 |
-
image = np.array(image).astype(np.float32) / 255.0
|
36 |
-
image = image.transpose(0, 3, 1, 2)
|
37 |
-
image = 2.0 * image - 1.0
|
38 |
-
image = torch.from_numpy(image)
|
39 |
-
elif isinstance(image[0], torch.Tensor):
|
40 |
-
image = torch.cat(image, dim=0)
|
41 |
-
return image
|
42 |
-
|
43 |
-
|
44 |
-
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
|
45 |
-
if not isinstance(v0, np.ndarray):
|
46 |
-
inputs_are_torch = True
|
47 |
-
input_device = v0.device
|
48 |
-
v0 = v0.cpu().numpy()
|
49 |
-
v1 = v1.cpu().numpy()
|
50 |
-
|
51 |
-
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
52 |
-
if np.abs(dot) > DOT_THRESHOLD:
|
53 |
-
v2 = (1 - t) * v0 + t * v1
|
54 |
-
else:
|
55 |
-
theta_0 = np.arccos(dot)
|
56 |
-
sin_theta_0 = np.sin(theta_0)
|
57 |
-
theta_t = theta_0 * t
|
58 |
-
sin_theta_t = np.sin(theta_t)
|
59 |
-
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
60 |
-
s1 = sin_theta_t / sin_theta_0
|
61 |
-
v2 = s0 * v0 + s1 * v1
|
62 |
-
|
63 |
-
if inputs_are_torch:
|
64 |
-
v2 = torch.from_numpy(v2).to(input_device)
|
65 |
-
|
66 |
-
return v2
|
67 |
-
|
68 |
-
|
69 |
-
def spherical_dist_loss(x, y):
|
70 |
-
x = F.normalize(x, dim=-1)
|
71 |
-
y = F.normalize(y, dim=-1)
|
72 |
-
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
|
73 |
-
|
74 |
-
|
75 |
-
def set_requires_grad(model, value):
|
76 |
-
for param in model.parameters():
|
77 |
-
param.requires_grad = value
|
78 |
-
|
79 |
-
|
80 |
-
class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
81 |
-
def __init__(
|
82 |
-
self,
|
83 |
-
vae: AutoencoderKL,
|
84 |
-
text_encoder: CLIPTextModel,
|
85 |
-
clip_model: CLIPModel,
|
86 |
-
tokenizer: CLIPTokenizer,
|
87 |
-
unet: UNet2DConditionModel,
|
88 |
-
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
|
89 |
-
feature_extractor: CLIPFeatureExtractor,
|
90 |
-
coca_model=None,
|
91 |
-
coca_tokenizer=None,
|
92 |
-
coca_transform=None,
|
93 |
-
):
|
94 |
-
super().__init__()
|
95 |
-
self.register_modules(
|
96 |
-
vae=vae,
|
97 |
-
text_encoder=text_encoder,
|
98 |
-
clip_model=clip_model,
|
99 |
-
tokenizer=tokenizer,
|
100 |
-
unet=unet,
|
101 |
-
scheduler=scheduler,
|
102 |
-
feature_extractor=feature_extractor,
|
103 |
-
coca_model=coca_model,
|
104 |
-
coca_tokenizer=coca_tokenizer,
|
105 |
-
coca_transform=coca_transform,
|
106 |
-
)
|
107 |
-
self.feature_extractor_size = (
|
108 |
-
feature_extractor.size
|
109 |
-
if isinstance(feature_extractor.size, int)
|
110 |
-
else feature_extractor.size["shortest_edge"]
|
111 |
-
)
|
112 |
-
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
113 |
-
set_requires_grad(self.text_encoder, False)
|
114 |
-
set_requires_grad(self.clip_model, False)
|
115 |
-
|
116 |
-
def freeze_vae(self):
|
117 |
-
set_requires_grad(self.vae, False)
|
118 |
-
|
119 |
-
def unfreeze_vae(self):
|
120 |
-
set_requires_grad(self.vae, True)
|
121 |
-
|
122 |
-
def freeze_unet(self):
|
123 |
-
set_requires_grad(self.unet, False)
|
124 |
-
|
125 |
-
def unfreeze_unet(self):
|
126 |
-
set_requires_grad(self.unet, True)
|
127 |
-
|
128 |
-
def get_timesteps(self, num_inference_steps, strength, device):
|
129 |
-
# get the original timestep using init_timestep
|
130 |
-
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
131 |
-
|
132 |
-
t_start = max(num_inference_steps - init_timestep, 0)
|
133 |
-
timesteps = self.scheduler.timesteps[t_start:]
|
134 |
-
|
135 |
-
return timesteps, num_inference_steps - t_start
|
136 |
-
|
137 |
-
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None):
|
138 |
-
if not isinstance(image, torch.Tensor):
|
139 |
-
raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(image)}")
|
140 |
-
|
141 |
-
image = image.to(device=device, dtype=dtype)
|
142 |
-
|
143 |
-
if isinstance(generator, list):
|
144 |
-
init_latents = [
|
145 |
-
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
146 |
-
]
|
147 |
-
init_latents = torch.cat(init_latents, dim=0)
|
148 |
-
else:
|
149 |
-
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
150 |
-
|
151 |
-
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
|
152 |
-
init_latents = 0.18215 * init_latents
|
153 |
-
init_latents = init_latents.repeat_interleave(batch_size, dim=0)
|
154 |
-
|
155 |
-
noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype)
|
156 |
-
|
157 |
-
# get latents
|
158 |
-
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
159 |
-
latents = init_latents
|
160 |
-
|
161 |
-
return latents
|
162 |
-
|
163 |
-
def get_image_description(self, image):
|
164 |
-
transformed_image = self.coca_transform(image).unsqueeze(0)
|
165 |
-
with torch.no_grad(), torch.cuda.amp.autocast():
|
166 |
-
generated = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype))
|
167 |
-
generated = self.coca_tokenizer.decode(generated[0].cpu().numpy())
|
168 |
-
return generated.split("<end_of_text>")[0].replace("<start_of_text>", "").rstrip(" .,")
|
169 |
-
|
170 |
-
def get_clip_image_embeddings(self, image, batch_size):
|
171 |
-
clip_image_input = self.feature_extractor.preprocess(image)
|
172 |
-
clip_image_features = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half()
|
173 |
-
image_embeddings_clip = self.clip_model.get_image_features(clip_image_features)
|
174 |
-
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
175 |
-
image_embeddings_clip = image_embeddings_clip.repeat_interleave(batch_size, dim=0)
|
176 |
-
return image_embeddings_clip
|
177 |
-
|
178 |
-
@torch.enable_grad()
|
179 |
-
def cond_fn(
|
180 |
-
self,
|
181 |
-
latents,
|
182 |
-
timestep,
|
183 |
-
index,
|
184 |
-
text_embeddings,
|
185 |
-
noise_pred_original,
|
186 |
-
original_image_embeddings_clip,
|
187 |
-
clip_guidance_scale,
|
188 |
-
):
|
189 |
-
latents = latents.detach().requires_grad_()
|
190 |
-
|
191 |
-
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
192 |
-
|
193 |
-
# predict the noise residual
|
194 |
-
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
|
195 |
-
|
196 |
-
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
|
197 |
-
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
198 |
-
beta_prod_t = 1 - alpha_prod_t
|
199 |
-
# compute predicted original sample from predicted noise also called
|
200 |
-
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
201 |
-
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
202 |
-
|
203 |
-
fac = torch.sqrt(beta_prod_t)
|
204 |
-
sample = pred_original_sample * (fac) + latents * (1 - fac)
|
205 |
-
elif isinstance(self.scheduler, LMSDiscreteScheduler):
|
206 |
-
sigma = self.scheduler.sigmas[index]
|
207 |
-
sample = latents - sigma * noise_pred
|
208 |
-
else:
|
209 |
-
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
|
210 |
-
|
211 |
-
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
|
212 |
-
sample = 1 / 0.18215 * sample
|
213 |
-
image = self.vae.decode(sample).sample
|
214 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
215 |
-
|
216 |
-
image = transforms.Resize(self.feature_extractor_size)(image)
|
217 |
-
image = self.normalize(image).to(latents.dtype)
|
218 |
-
|
219 |
-
image_embeddings_clip = self.clip_model.get_image_features(image)
|
220 |
-
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
221 |
-
|
222 |
-
loss = spherical_dist_loss(image_embeddings_clip, original_image_embeddings_clip).mean() * clip_guidance_scale
|
223 |
-
|
224 |
-
grads = -torch.autograd.grad(loss, latents)[0]
|
225 |
-
|
226 |
-
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
227 |
-
latents = latents.detach() + grads * (sigma**2)
|
228 |
-
noise_pred = noise_pred_original
|
229 |
-
else:
|
230 |
-
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
|
231 |
-
return noise_pred, latents
|
232 |
-
|
233 |
-
@torch.no_grad()
|
234 |
-
def __call__(
|
235 |
-
self,
|
236 |
-
style_image: Union[torch.Tensor, PIL.Image.Image],
|
237 |
-
content_image: Union[torch.Tensor, PIL.Image.Image],
|
238 |
-
style_prompt: Optional[str] = None,
|
239 |
-
content_prompt: Optional[str] = None,
|
240 |
-
height: Optional[int] = 512,
|
241 |
-
width: Optional[int] = 512,
|
242 |
-
noise_strength: float = 0.6,
|
243 |
-
num_inference_steps: Optional[int] = 50,
|
244 |
-
guidance_scale: Optional[float] = 7.5,
|
245 |
-
batch_size: Optional[int] = 1,
|
246 |
-
eta: float = 0.0,
|
247 |
-
clip_guidance_scale: Optional[float] = 100,
|
248 |
-
generator: Optional[torch.Generator] = None,
|
249 |
-
output_type: Optional[str] = "pil",
|
250 |
-
return_dict: bool = True,
|
251 |
-
slerp_latent_style_strength: float = 0.8,
|
252 |
-
slerp_prompt_style_strength: float = 0.1,
|
253 |
-
slerp_clip_image_style_strength: float = 0.1,
|
254 |
-
):
|
255 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
256 |
-
raise ValueError(f"You have passed {batch_size} batch_size, but only {len(generator)} generators.")
|
257 |
-
|
258 |
-
if height % 8 != 0 or width % 8 != 0:
|
259 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
260 |
-
|
261 |
-
if isinstance(generator, torch.Generator) and batch_size > 1:
|
262 |
-
generator = [generator] + [None] * (batch_size - 1)
|
263 |
-
|
264 |
-
coca_is_none = [
|
265 |
-
("model", self.coca_model is None),
|
266 |
-
("tokenizer", self.coca_tokenizer is None),
|
267 |
-
("transform", self.coca_transform is None),
|
268 |
-
]
|
269 |
-
coca_is_none = [x[0] for x in coca_is_none if x[1]]
|
270 |
-
coca_is_none_str = ", ".join(coca_is_none)
|
271 |
-
# generate prompts with coca model if prompt is None
|
272 |
-
if content_prompt is None:
|
273 |
-
if len(coca_is_none):
|
274 |
-
raise ValueError(
|
275 |
-
f"Content prompt is None and CoCa [{coca_is_none_str}] is None."
|
276 |
-
f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
|
277 |
-
)
|
278 |
-
content_prompt = self.get_image_description(content_image)
|
279 |
-
if style_prompt is None:
|
280 |
-
if len(coca_is_none):
|
281 |
-
raise ValueError(
|
282 |
-
f"Style prompt is None and CoCa [{coca_is_none_str}] is None."
|
283 |
-
f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
|
284 |
-
)
|
285 |
-
style_prompt = self.get_image_description(style_image)
|
286 |
-
|
287 |
-
# get prompt text embeddings for content and style
|
288 |
-
content_text_input = self.tokenizer(
|
289 |
-
content_prompt,
|
290 |
-
padding="max_length",
|
291 |
-
max_length=self.tokenizer.model_max_length,
|
292 |
-
truncation=True,
|
293 |
-
return_tensors="pt",
|
294 |
-
)
|
295 |
-
content_text_embeddings = self.text_encoder(content_text_input.input_ids.to(self.device))[0]
|
296 |
-
|
297 |
-
style_text_input = self.tokenizer(
|
298 |
-
style_prompt,
|
299 |
-
padding="max_length",
|
300 |
-
max_length=self.tokenizer.model_max_length,
|
301 |
-
truncation=True,
|
302 |
-
return_tensors="pt",
|
303 |
-
)
|
304 |
-
style_text_embeddings = self.text_encoder(style_text_input.input_ids.to(self.device))[0]
|
305 |
-
|
306 |
-
text_embeddings = slerp(slerp_prompt_style_strength, content_text_embeddings, style_text_embeddings)
|
307 |
-
|
308 |
-
# duplicate text embeddings for each generation per prompt
|
309 |
-
text_embeddings = text_embeddings.repeat_interleave(batch_size, dim=0)
|
310 |
-
|
311 |
-
# set timesteps
|
312 |
-
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
313 |
-
extra_set_kwargs = {}
|
314 |
-
if accepts_offset:
|
315 |
-
extra_set_kwargs["offset"] = 1
|
316 |
-
|
317 |
-
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
318 |
-
# Some schedulers like PNDM have timesteps as arrays
|
319 |
-
# It's more optimized to move all timesteps to correct device beforehand
|
320 |
-
self.scheduler.timesteps.to(self.device)
|
321 |
-
|
322 |
-
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, noise_strength, self.device)
|
323 |
-
latent_timestep = timesteps[:1].repeat(batch_size)
|
324 |
-
|
325 |
-
# Preprocess image
|
326 |
-
preprocessed_content_image = preprocess(content_image, width, height)
|
327 |
-
content_latents = self.prepare_latents(
|
328 |
-
preprocessed_content_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
|
329 |
-
)
|
330 |
-
|
331 |
-
preprocessed_style_image = preprocess(style_image, width, height)
|
332 |
-
style_latents = self.prepare_latents(
|
333 |
-
preprocessed_style_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
|
334 |
-
)
|
335 |
-
|
336 |
-
latents = slerp(slerp_latent_style_strength, content_latents, style_latents)
|
337 |
-
|
338 |
-
if clip_guidance_scale > 0:
|
339 |
-
content_clip_image_embedding = self.get_clip_image_embeddings(content_image, batch_size)
|
340 |
-
style_clip_image_embedding = self.get_clip_image_embeddings(style_image, batch_size)
|
341 |
-
clip_image_embeddings = slerp(
|
342 |
-
slerp_clip_image_style_strength, content_clip_image_embedding, style_clip_image_embedding
|
343 |
-
)
|
344 |
-
|
345 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
346 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
347 |
-
# corresponds to doing no classifier free guidance.
|
348 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
349 |
-
# get unconditional embeddings for classifier free guidance
|
350 |
-
if do_classifier_free_guidance:
|
351 |
-
max_length = content_text_input.input_ids.shape[-1]
|
352 |
-
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
|
353 |
-
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
354 |
-
# duplicate unconditional embeddings for each generation per prompt
|
355 |
-
uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size, dim=0)
|
356 |
-
|
357 |
-
# For classifier free guidance, we need to do two forward passes.
|
358 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
359 |
-
# to avoid doing two forward passes
|
360 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
361 |
-
|
362 |
-
# get the initial random noise unless the user supplied it
|
363 |
-
|
364 |
-
# Unlike in other pipelines, latents need to be generated in the target device
|
365 |
-
# for 1-to-1 results reproducibility with the CompVis implementation.
|
366 |
-
# However this currently doesn't work in `mps`.
|
367 |
-
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
|
368 |
-
latents_dtype = text_embeddings.dtype
|
369 |
-
if latents is None:
|
370 |
-
if self.device.type == "mps":
|
371 |
-
# randn does not work reproducibly on mps
|
372 |
-
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
373 |
-
self.device
|
374 |
-
)
|
375 |
-
else:
|
376 |
-
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
377 |
-
else:
|
378 |
-
if latents.shape != latents_shape:
|
379 |
-
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
380 |
-
latents = latents.to(self.device)
|
381 |
-
|
382 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
383 |
-
latents = latents * self.scheduler.init_noise_sigma
|
384 |
-
|
385 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
386 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
387 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
388 |
-
# and should be between [0, 1]
|
389 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
390 |
-
extra_step_kwargs = {}
|
391 |
-
if accepts_eta:
|
392 |
-
extra_step_kwargs["eta"] = eta
|
393 |
-
|
394 |
-
# check if the scheduler accepts generator
|
395 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
396 |
-
if accepts_generator:
|
397 |
-
extra_step_kwargs["generator"] = generator
|
398 |
-
|
399 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
400 |
-
for i, t in enumerate(timesteps):
|
401 |
-
# expand the latents if we are doing classifier free guidance
|
402 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
403 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
404 |
-
|
405 |
-
# predict the noise residual
|
406 |
-
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
407 |
-
|
408 |
-
# perform classifier free guidance
|
409 |
-
if do_classifier_free_guidance:
|
410 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
411 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
412 |
-
|
413 |
-
# perform clip guidance
|
414 |
-
if clip_guidance_scale > 0:
|
415 |
-
text_embeddings_for_guidance = (
|
416 |
-
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
|
417 |
-
)
|
418 |
-
noise_pred, latents = self.cond_fn(
|
419 |
-
latents,
|
420 |
-
t,
|
421 |
-
i,
|
422 |
-
text_embeddings_for_guidance,
|
423 |
-
noise_pred,
|
424 |
-
clip_image_embeddings,
|
425 |
-
clip_guidance_scale,
|
426 |
-
)
|
427 |
-
|
428 |
-
# compute the previous noisy sample x_t -> x_t-1
|
429 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
430 |
-
|
431 |
-
progress_bar.update()
|
432 |
-
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
|
433 |
-
latents = 1 / 0.18215 * latents
|
434 |
-
image = self.vae.decode(latents).sample
|
435 |
-
|
436 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
437 |
-
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
438 |
-
|
439 |
-
if output_type == "pil":
|
440 |
-
image = self.numpy_to_pil(image)
|
441 |
-
|
442 |
-
if not return_dict:
|
443 |
-
return (image, None)
|
444 |
-
|
445 |
-
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|