Datasets:

ArXiv:
diffusers-benchmarking-bot commited on
Commit
46b6a06
·
verified ·
1 Parent(s): c6176cc

Upload folder using huggingface_hub

Browse files
main/README.md CHANGED
@@ -77,6 +77,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
77
  PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixart alpha and its diffusers pipeline | [PIXART-α Controlnet pipeline](#pixart-α-controlnet-pipeline) | - | [Raul Ciotescu](https://github.com/raulc0399/) |
78
  | HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
79
  | [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
 
80
 
81
  To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
82
 
@@ -4585,8 +4586,8 @@ image = pipe(
4585
  ```
4586
 
4587
  | ![Gradient](https://github.com/user-attachments/assets/e38ce4d5-1ae6-4df0-ab43-adc1b45716b5) | ![Input](https://github.com/user-attachments/assets/9c95679c-e9d7-4f5a-90d6-560203acd6b3) | ![Output](https://github.com/user-attachments/assets/5313ff64-a0c4-418b-8b55-a38f1a5e7532) |
4588
- | ------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------- |
4589
- | Gradient | Input | Output |
4590
 
4591
  A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.
4592
 
@@ -4634,6 +4635,93 @@ make_image_grid(image, rows=1, cols=len(image))
4634
  # 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
4635
  ```
4636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4637
  # Perturbed-Attention Guidance
4638
 
4639
  [Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)
 
77
  PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixart alpha and its diffusers pipeline | [PIXART-α Controlnet pipeline](#pixart-α-controlnet-pipeline) | - | [Raul Ciotescu](https://github.com/raulc0399/) |
78
  | HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
79
  | [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
80
+ | Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
81
 
82
  To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
83
 
 
4586
  ```
4587
 
4588
  | ![Gradient](https://github.com/user-attachments/assets/e38ce4d5-1ae6-4df0-ab43-adc1b45716b5) | ![Input](https://github.com/user-attachments/assets/9c95679c-e9d7-4f5a-90d6-560203acd6b3) | ![Output](https://github.com/user-attachments/assets/5313ff64-a0c4-418b-8b55-a38f1a5e7532) |
4589
+ | -------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------ |
4590
+ | Gradient | Input | Output |
4591
 
4592
  A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.
4593
 
 
4635
  # 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
4636
  ```
4637
 
4638
+ ### Stable Diffusion XL Attentive Eraser Pipeline
4639
+ <img src="https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/fenmian.png" width="600" />
4640
+
4641
+ **Stable Diffusion XL Attentive Eraser Pipeline** is an advanced object removal pipeline that leverages SDXL for precise content suppression and seamless region completion. This pipeline uses **self-attention redirection guidance** to modify the model’s self-attention mechanism, allowing for effective removal and inpainting across various levels of mask precision, including semantic segmentation masks, bounding boxes, and hand-drawn masks. If you are interested in more detailed information and have any questions, please refer to the [paper](https://arxiv.org/abs/2412.12974) and [official implementation](https://github.com/Anonym0u3/AttentiveEraser).
4642
+
4643
+ #### Key features
4644
+
4645
+ - **Tuning-Free**: No additional training is required, making it easy to integrate and use.
4646
+ - **Flexible Mask Support**: Works with different types of masks for targeted object removal.
4647
+ - **High-Quality Results**: Utilizes the inherent generative power of diffusion models for realistic content completion.
4648
+
4649
+ #### Usage example
4650
+ To use the Stable Diffusion XL Attentive Eraser Pipeline, you can initialize it as follows:
4651
+ ```py
4652
+ import torch
4653
+ from diffusers import DDIMScheduler, DiffusionPipeline
4654
+ from diffusers.utils import load_image
4655
+ import torch.nn.functional as F
4656
+ from torchvision.transforms.functional import to_tensor, gaussian_blur
4657
+
4658
+ dtype = torch.float16
4659
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
4660
+
4661
+ scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
4662
+ pipeline = DiffusionPipeline.from_pretrained(
4663
+ "stabilityai/stable-diffusion-xl-base-1.0",
4664
+ custom_pipeline="pipeline_stable_diffusion_xl_attentive_eraser",
4665
+ scheduler=scheduler,
4666
+ variant="fp16",
4667
+ use_safetensors=True,
4668
+ torch_dtype=dtype,
4669
+ ).to(device)
4670
+
4671
+
4672
+ def preprocess_image(image_path, device):
4673
+ image = to_tensor((load_image(image_path)))
4674
+ image = image.unsqueeze_(0).float() * 2 - 1 # [0,1] --> [-1,1]
4675
+ if image.shape[1] != 3:
4676
+ image = image.expand(-1, 3, -1, -1)
4677
+ image = F.interpolate(image, (1024, 1024))
4678
+ image = image.to(dtype).to(device)
4679
+ return image
4680
+
4681
+ def preprocess_mask(mask_path, device):
4682
+ mask = to_tensor((load_image(mask_path, convert_method=lambda img: img.convert('L'))))
4683
+ mask = mask.unsqueeze_(0).float() # 0 or 1
4684
+ mask = F.interpolate(mask, (1024, 1024))
4685
+ mask = gaussian_blur(mask, kernel_size=(77, 77))
4686
+ mask[mask < 0.1] = 0
4687
+ mask[mask >= 0.1] = 1
4688
+ mask = mask.to(dtype).to(device)
4689
+ return mask
4690
+
4691
+ prompt = "" # Set prompt to null
4692
+ seed=123
4693
+ generator = torch.Generator(device=device).manual_seed(seed)
4694
+ source_image_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png"
4695
+ mask_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png"
4696
+ source_image = preprocess_image(source_image_path, device)
4697
+ mask = preprocess_mask(mask_path, device)
4698
+
4699
+ image = pipeline(
4700
+ prompt=prompt,
4701
+ image=source_image,
4702
+ mask_image=mask,
4703
+ height=1024,
4704
+ width=1024,
4705
+ AAS=True, # enable AAS
4706
+ strength=0.8, # inpainting strength
4707
+ rm_guidance_scale=9, # removal guidance scale
4708
+ ss_steps = 9, # similarity suppression steps
4709
+ ss_scale = 0.3, # similarity suppression scale
4710
+ AAS_start_step=0, # AAS start step
4711
+ AAS_start_layer=34, # AAS start layer
4712
+ AAS_end_layer=70, # AAS end layer
4713
+ num_inference_steps=50, # number of inference steps # AAS_end_step = int(strength*num_inference_steps)
4714
+ generator=generator,
4715
+ guidance_scale=1,
4716
+ ).images[0]
4717
+ image.save('./removed_img.png')
4718
+ print("Object removal completed")
4719
+ ```
4720
+
4721
+ | Source Image | Mask | Output |
4722
+ | ---------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------- |
4723
+ | ![Source Image](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png) | ![Mask](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png) | ![Output](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/AE_step40_layer34.png) |
4724
+
4725
  # Perturbed-Attention Guidance
4726
 
4727
  [Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)
main/pipeline_stable_diffusion_xl_attentive_eraser.py ADDED
The diff for this file is too large to render. See raw diff