Upload folder using huggingface_hub
Browse files- main/README.md +56 -10
- main/matryoshka.py +0 -0
main/README.md
CHANGED
@@ -73,7 +73,8 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
|
|
73 |
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
|
74 |
| FRESCO V2V Pipeline | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://arxiv.org/abs/2403.12962) | [FRESCO V2V Pipeline](#fresco) | - | [Yifan Zhou](https://github.com/SingleZombie) |
|
75 |
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
|
76 |
-
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential
|
|
|
77 |
|
78 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
79 |
|
@@ -85,17 +86,17 @@ pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion
|
|
85 |
|
86 |
### Flux with CFG
|
87 |
|
88 |
-
Know more about Flux [here](https://blackforestlabs.ai/announcing-black-forest-labs/). Since Flux doesn't use CFG, this implementation provides one, inspired by the [PuLID Flux adaptation](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md).
|
89 |
|
90 |
Example usage:
|
91 |
|
92 |
```py
|
93 |
from diffusers import DiffusionPipeline
|
94 |
-
import torch
|
95 |
|
96 |
pipeline = DiffusionPipeline.from_pretrained(
|
97 |
-
"black-forest-labs/FLUX.1-dev",
|
98 |
-
torch_dtype=torch.bfloat16,
|
99 |
custom_pipeline="pipeline_flux_with_cfg"
|
100 |
)
|
101 |
pipeline.enable_model_cpu_offload()
|
@@ -103,10 +104,10 @@ prompt = "a watercolor painting of a unicorn"
|
|
103 |
negative_prompt = "pink"
|
104 |
|
105 |
img = pipeline(
|
106 |
-
prompt=prompt,
|
107 |
-
negative_prompt=negative_prompt,
|
108 |
-
true_cfg=1.5,
|
109 |
-
guidance_scale=3.5,
|
110 |
num_images_per_prompt=1,
|
111 |
generator=torch.manual_seed(0)
|
112 |
).images[0]
|
@@ -2656,7 +2657,7 @@ image with mask mech_painted.png
|
|
2656 |
|
2657 |
<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >
|
2658 |
|
2659 |
-
result:
|
2660 |
|
2661 |
<img src=https://github.com/noskill/diffusers/assets/733626/5043fb57-a785-4606-a5ba-a36704f7cb42 width="25%" >
|
2662 |
|
@@ -4324,6 +4325,51 @@ image = pipe(
|
|
4324 |
|
4325 |
A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.
|
4326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4327 |
# Perturbed-Attention Guidance
|
4328 |
|
4329 |
[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)
|
|
|
73 |
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
|
74 |
| FRESCO V2V Pipeline | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://arxiv.org/abs/2403.12962) | [FRESCO V2V Pipeline](#fresco) | - | [Yifan Zhou](https://github.com/SingleZombie) |
|
75 |
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
|
76 |
+
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
|
77 |
+
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
|
78 |
|
79 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
80 |
|
|
|
86 |
|
87 |
### Flux with CFG
|
88 |
|
89 |
+
Know more about Flux [here](https://blackforestlabs.ai/announcing-black-forest-labs/). Since Flux doesn't use CFG, this implementation provides one, inspired by the [PuLID Flux adaptation](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md).
|
90 |
|
91 |
Example usage:
|
92 |
|
93 |
```py
|
94 |
from diffusers import DiffusionPipeline
|
95 |
+
import torch
|
96 |
|
97 |
pipeline = DiffusionPipeline.from_pretrained(
|
98 |
+
"black-forest-labs/FLUX.1-dev",
|
99 |
+
torch_dtype=torch.bfloat16,
|
100 |
custom_pipeline="pipeline_flux_with_cfg"
|
101 |
)
|
102 |
pipeline.enable_model_cpu_offload()
|
|
|
104 |
negative_prompt = "pink"
|
105 |
|
106 |
img = pipeline(
|
107 |
+
prompt=prompt,
|
108 |
+
negative_prompt=negative_prompt,
|
109 |
+
true_cfg=1.5,
|
110 |
+
guidance_scale=3.5,
|
111 |
num_images_per_prompt=1,
|
112 |
generator=torch.manual_seed(0)
|
113 |
).images[0]
|
|
|
2657 |
|
2658 |
<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >
|
2659 |
|
2660 |
+
result:
|
2661 |
|
2662 |
<img src=https://github.com/noskill/diffusers/assets/733626/5043fb57-a785-4606-a5ba-a36704f7cb42 width="25%" >
|
2663 |
|
|
|
4325 |
|
4326 |
A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.
|
4327 |
|
4328 |
+
### 🪆Matryoshka Diffusion Models
|
4329 |
+
|
4330 |
+
![🪆Matryoshka Diffusion Models](https://github.com/user-attachments/assets/bf90b53b-48c3-4769-a805-d9dfe4a7c572)
|
4331 |
+
|
4332 |
+
The Abstract of the paper:
|
4333 |
+
>Diffusion models are the _de-facto_ approach for generating high-quality images and videos but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space, or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion (MDM), **a novel framework for high-resolution image and video synthesis**. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a **NestedUNet** architecture where features and parameters for small scale inputs are nested within those of the large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a **_single pixel-space model_ at resolutions of up to 1024 × 1024 pixels**, demonstrating strong zero shot generalization using the **CC12M dataset, which contains only 12 million images**. Code and pre-trained checkpoints are released at https://github.com/apple/ml-mdm.
|
4334 |
+
|
4335 |
+
- `64×64, nesting_level=0`: 1.719 GiB. With `50` DDIM inference steps:
|
4336 |
+
|
4337 |
+
**64x64**
|
4338 |
+
:-------------------------:
|
4339 |
+
| <img src="https://github.com/user-attachments/assets/9e7bb2cd-45a0-4bd1-adb8-23e283baed39" width="222" height="222" alt="bird_64"> |
|
4340 |
+
|
4341 |
+
- `256×256, nesting_level=1`: 1.776 GiB. With `150` DDIM inference steps:
|
4342 |
+
|
4343 |
+
**64x64** | **256x256**
|
4344 |
+
:-------------------------:|:-------------------------:
|
4345 |
+
| <img src="https://github.com/user-attachments/assets/6b724c2e-5e6a-4b63-9b65-c1182cbb67e0" width="222" height="222" alt="64x64"> | <img src="https://github.com/user-attachments/assets/7dbab2ad-bf40-4a73-ab04-f178347cb7d5" width="222" height="222" alt="256x256"> |
|
4346 |
+
|
4347 |
+
- `1024×1024, nesting_level=2`: 1.792 GiB. As one can realize the cost of adding another layer is really negligible. With `250` DDIM inference steps:
|
4348 |
+
|
4349 |
+
**64x64** | **256x256** | **1024x1024**
|
4350 |
+
:-------------------------:|:-------------------------:|:-------------------------:
|
4351 |
+
| <img src="https://github.com/user-attachments/assets/4a9454e4-e20a-4736-a196-270e2ae796c0" width="222" height="222" alt="64x64"> | <img src="https://github.com/user-attachments/assets/4a96555d-0fda-4303-82b1-a4d886f770b9" width="222" height="222" alt="256x256"> | <img src="https://github.com/user-attachments/assets/e0239b7a-ab73-4d45-8f3e-b4e6b4b50abe" width="222" height="222" alt="1024x1024"> |
|
4352 |
+
|
4353 |
+
```py
|
4354 |
+
from diffusers import DiffusionPipeline
|
4355 |
+
from diffusers.utils import make_image_grid
|
4356 |
+
|
4357 |
+
# nesting_level=0 -> 64x64; nesting_level=1 -> 256x256 - 64x64; nesting_level=2 -> 1024x1024 - 256x256 - 64x64
|
4358 |
+
pipe = DiffusionPipeline.from_pretrained("tolgacangoz/matryoshka-diffusion-models",
|
4359 |
+
nesting_level=0,
|
4360 |
+
trust_remote_code=False, # One needs to give permission for this code to run
|
4361 |
+
).to("cuda")
|
4362 |
+
|
4363 |
+
prompt0 = "a blue jay stops on the top of a helmet of Japanese samurai, background with sakura tree"
|
4364 |
+
prompt = f"breathtaking {prompt0}. award-winning, professional, highly detailed"
|
4365 |
+
negative_prompt = "deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy"
|
4366 |
+
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=50).images
|
4367 |
+
make_image_grid(image, rows=1, cols=len(image))
|
4368 |
+
|
4369 |
+
# pipe.change_nesting_level(<int>) # 0, 1, or 2
|
4370 |
+
# 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
|
4371 |
+
```
|
4372 |
+
|
4373 |
# Perturbed-Attention Guidance
|
4374 |
|
4375 |
[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)
|
main/matryoshka.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|