|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms as T |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel |
|
from diffusers.models.attention_processor import Attention, AttnProcessor |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
from diffusers.pipelines.controlnet.pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import BaseOutput, deprecate, logging |
|
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor |
|
|
|
|
|
gmflow_dir = "/path/to/gmflow" |
|
sys.path.insert(0, gmflow_dir) |
|
from gmflow.gmflow import GMFlow |
|
|
|
from utils.utils import InputPadder |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def coords_grid(b, h, w, homogeneous=False, device=None): |
|
y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) |
|
|
|
stacks = [x, y] |
|
|
|
if homogeneous: |
|
ones = torch.ones_like(x) |
|
stacks.append(ones) |
|
|
|
grid = torch.stack(stacks, dim=0).float() |
|
|
|
grid = grid[None].repeat(b, 1, 1, 1) |
|
|
|
if device is not None: |
|
grid = grid.to(device) |
|
|
|
return grid |
|
|
|
|
|
def bilinear_sample(img, sample_coords, mode="bilinear", padding_mode="zeros", return_mask=False): |
|
|
|
|
|
if sample_coords.size(1) != 2: |
|
sample_coords = sample_coords.permute(0, 3, 1, 2) |
|
|
|
b, _, h, w = sample_coords.shape |
|
|
|
|
|
x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1 |
|
y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1 |
|
|
|
grid = torch.stack([x_grid, y_grid], dim=-1) |
|
|
|
img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True) |
|
|
|
if return_mask: |
|
mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) |
|
|
|
return img, mask |
|
|
|
return img |
|
|
|
|
|
def flow_warp(feature, flow, mask=False, mode="bilinear", padding_mode="zeros"): |
|
b, c, h, w = feature.size() |
|
assert flow.size(1) == 2 |
|
|
|
grid = coords_grid(b, h, w).to(flow.device) + flow |
|
grid = grid.to(feature.dtype) |
|
return bilinear_sample(feature, grid, mode=mode, padding_mode=padding_mode, return_mask=mask) |
|
|
|
|
|
def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.01, beta=0.5): |
|
|
|
|
|
|
|
assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4 |
|
assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2 |
|
flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) |
|
|
|
warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) |
|
warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) |
|
|
|
diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) |
|
diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1) |
|
|
|
threshold = alpha * flow_mag + beta |
|
|
|
fwd_occ = (diff_fwd > threshold).float() |
|
bwd_occ = (diff_bwd > threshold).float() |
|
|
|
return fwd_occ, bwd_occ |
|
|
|
|
|
@torch.no_grad() |
|
def get_warped_and_mask(flow_model, image1, image2, image3=None, pixel_consistency=False): |
|
if image3 is None: |
|
image3 = image1 |
|
padder = InputPadder(image1.shape, padding_factor=8) |
|
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) |
|
results_dict = flow_model( |
|
image1, image2, attn_splits_list=[2], corr_radius_list=[-1], prop_radius_list=[-1], pred_bidir_flow=True |
|
) |
|
flow_pr = results_dict["flow_preds"][-1] |
|
fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) |
|
bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) |
|
fwd_occ, bwd_occ = forward_backward_consistency_check(fwd_flow, bwd_flow) |
|
if pixel_consistency: |
|
warped_image1 = flow_warp(image1, bwd_flow) |
|
bwd_occ = torch.clamp( |
|
bwd_occ + (abs(image2 - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0, 1 |
|
).unsqueeze(0) |
|
warped_results = flow_warp(image3, bwd_flow) |
|
return warped_results, bwd_occ, bwd_flow |
|
|
|
|
|
blur = T.GaussianBlur(kernel_size=(9, 9), sigma=(18, 18)) |
|
|
|
|
|
@dataclass |
|
class TextToVideoSDPipelineOutput(BaseOutput): |
|
""" |
|
Output class for text-to-video pipelines. |
|
|
|
Args: |
|
frames (`List[np.ndarray]` or `torch.FloatTensor`) |
|
List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as |
|
a `torch` tensor. The length of the list denotes the video length (the number of frames). |
|
""" |
|
|
|
frames: Union[List[np.ndarray], torch.FloatTensor] |
|
|
|
|
|
@torch.no_grad() |
|
def find_flat_region(mask): |
|
device = mask.device |
|
kernel_x = torch.Tensor([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]).unsqueeze(0).unsqueeze(0).to(device) |
|
kernel_y = torch.Tensor([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]).unsqueeze(0).unsqueeze(0).to(device) |
|
mask_ = F.pad(mask.unsqueeze(0), (1, 1, 1, 1), mode="replicate") |
|
|
|
grad_x = torch.nn.functional.conv2d(mask_, kernel_x) |
|
grad_y = torch.nn.functional.conv2d(mask_, kernel_y) |
|
return ((abs(grad_x) + abs(grad_y)) == 0).float()[0] |
|
|
|
|
|
class AttnState: |
|
STORE = 0 |
|
LOAD = 1 |
|
LOAD_AND_STORE_PREV = 2 |
|
|
|
def __init__(self): |
|
self.reset() |
|
|
|
@property |
|
def state(self): |
|
return self.__state |
|
|
|
@property |
|
def timestep(self): |
|
return self.__timestep |
|
|
|
def set_timestep(self, t): |
|
self.__timestep = t |
|
|
|
def reset(self): |
|
self.__state = AttnState.STORE |
|
self.__timestep = 0 |
|
|
|
def to_load(self): |
|
self.__state = AttnState.LOAD |
|
|
|
def to_load_and_store_prev(self): |
|
self.__state = AttnState.LOAD_AND_STORE_PREV |
|
|
|
|
|
class CrossFrameAttnProcessor(AttnProcessor): |
|
""" |
|
Cross frame attention processor. Each frame attends the first frame and previous frame. |
|
|
|
Args: |
|
attn_state: Whether the model is processing the first frame or an intermediate frame |
|
""" |
|
|
|
def __init__(self, attn_state: AttnState): |
|
super().__init__() |
|
self.attn_state = attn_state |
|
self.first_maps = {} |
|
self.prev_maps = {} |
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None): |
|
|
|
if encoder_hidden_states is None: |
|
t = self.attn_state.timestep |
|
if self.attn_state.state == AttnState.STORE: |
|
self.first_maps[t] = hidden_states.detach() |
|
self.prev_maps[t] = hidden_states.detach() |
|
res = super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask, temb) |
|
else: |
|
if self.attn_state.state == AttnState.LOAD_AND_STORE_PREV: |
|
tmp = hidden_states.detach() |
|
cross_map = torch.cat((self.first_maps[t], self.prev_maps[t]), dim=1) |
|
res = super().__call__(attn, hidden_states, cross_map, attention_mask, temb) |
|
if self.attn_state.state == AttnState.LOAD_AND_STORE_PREV: |
|
self.prev_maps[t] = tmp |
|
else: |
|
res = super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask, temb) |
|
|
|
return res |
|
|
|
|
|
def prepare_image(image): |
|
if isinstance(image, torch.Tensor): |
|
|
|
if image.ndim == 3: |
|
image = image.unsqueeze(0) |
|
|
|
image = image.to(dtype=torch.float32) |
|
else: |
|
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)): |
|
image = [image] |
|
|
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): |
|
image = [np.array(i.convert("RGB"))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray): |
|
image = np.concatenate([i[None, :] for i in image], axis=0) |
|
|
|
image = image.transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
|
|
return image |
|
|
|
|
|
class RerenderAVideoPipeline(StableDiffusionControlNetImg2ImgPipeline): |
|
r""" |
|
Pipeline for video-to-video translation using Stable Diffusion with Rerender Algorithm. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
In addition the pipeline inherits the following loading methods: |
|
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): |
|
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets |
|
as a list, the outputs from each ControlNet are added together to create one combined additional |
|
conditioning. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co./runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
image_encoder=None, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__( |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
controlnet, |
|
scheduler, |
|
safety_checker, |
|
feature_extractor, |
|
image_encoder, |
|
requires_safety_checker, |
|
) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
if isinstance(controlnet, (list, tuple)): |
|
controlnet = MultiControlNetModel(controlnet) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) |
|
self.control_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False |
|
) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
self.attn_state = AttnState() |
|
attn_processor_dict = {} |
|
for k in unet.attn_processors.keys(): |
|
if k.startswith("up"): |
|
attn_processor_dict[k] = CrossFrameAttnProcessor(self.attn_state) |
|
else: |
|
attn_processor_dict[k] = AttnProcessor() |
|
|
|
self.unet.set_attn_processor(attn_processor_dict) |
|
|
|
flow_model = GMFlow( |
|
feature_channels=128, |
|
num_scales=1, |
|
upsample_factor=8, |
|
num_head=1, |
|
attention_type="swin", |
|
ffn_dim_expansion=4, |
|
num_transformer_layers=6, |
|
).to("cuda") |
|
|
|
checkpoint = torch.utils.model_zoo.load_url( |
|
"https://huggingface.co./Anonymous-sub/Rerender/resolve/main/models/gmflow_sintel-0c07dcb3.pth", |
|
map_location=lambda storage, loc: storage, |
|
) |
|
weights = checkpoint["model"] if "model" in checkpoint else checkpoint |
|
flow_model.load_state_dict(weights, strict=False) |
|
flow_model.eval() |
|
self.flow_model = flow_model |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
controlnet_conditioning_scale=1.0, |
|
control_guidance_start=0.0, |
|
control_guidance_end=1.0, |
|
): |
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
|
|
if isinstance(self.controlnet, MultiControlNetModel): |
|
if isinstance(prompt, list): |
|
logger.warning( |
|
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" |
|
" prompts. The conditionings will be fixed across the prompts." |
|
) |
|
|
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( |
|
self.controlnet, torch._dynamo.eval_frame.OptimizedModule |
|
) |
|
|
|
|
|
if ( |
|
isinstance(self.controlnet, ControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, ControlNetModel) |
|
): |
|
if not isinstance(controlnet_conditioning_scale, float): |
|
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") |
|
elif ( |
|
isinstance(self.controlnet, MultiControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) |
|
): |
|
if isinstance(controlnet_conditioning_scale, list): |
|
if any(isinstance(i, list) for i in controlnet_conditioning_scale): |
|
raise ValueError("A single batch of multiple conditionings are supported at the moment.") |
|
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( |
|
self.controlnet.nets |
|
): |
|
raise ValueError( |
|
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" |
|
" the same length as the number of controlnets" |
|
) |
|
else: |
|
assert False |
|
|
|
if len(control_guidance_start) != len(control_guidance_end): |
|
raise ValueError( |
|
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." |
|
) |
|
|
|
if isinstance(self.controlnet, MultiControlNetModel): |
|
if len(control_guidance_start) != len(self.controlnet.nets): |
|
raise ValueError( |
|
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." |
|
) |
|
|
|
for start, end in zip(control_guidance_start, control_guidance_end): |
|
if start >= end: |
|
raise ValueError( |
|
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." |
|
) |
|
if start < 0.0: |
|
raise ValueError(f"control guidance start: {start} can't be smaller than 0.") |
|
if end > 1.0: |
|
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") |
|
|
|
|
|
def prepare_control_image( |
|
self, |
|
image, |
|
width, |
|
height, |
|
batch_size, |
|
num_images_per_prompt, |
|
device, |
|
dtype, |
|
do_classifier_free_guidance=False, |
|
guess_mode=False, |
|
): |
|
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) |
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
if image.shape[1] == 4: |
|
init_latents = image |
|
|
|
else: |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
elif isinstance(generator, list): |
|
init_latents = [ |
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = self.vae.encode(image).latent_dist.sample(generator) |
|
|
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
|
|
deprecation_message = ( |
|
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" |
|
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" |
|
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" |
|
" your script to pass as many initial images as text prompts to suppress this warning." |
|
) |
|
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) |
|
additional_image_per_prompt = batch_size // init_latents.shape[0] |
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
shape = init_latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
latents = init_latents |
|
|
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
frames: Union[List[np.ndarray], torch.FloatTensor] = None, |
|
control_frames: Union[List[np.ndarray], torch.FloatTensor] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 0.8, |
|
guess_mode: bool = False, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
warp_start: Union[float, List[float]] = 0.0, |
|
warp_end: Union[float, List[float]] = 0.3, |
|
mask_start: Union[float, List[float]] = 0.5, |
|
mask_end: Union[float, List[float]] = 0.8, |
|
smooth_boundary: bool = True, |
|
mask_strength: Union[float, List[float]] = 0.5, |
|
inner_strength: Union[float, List[float]] = 0.9, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
frames (`List[np.ndarray]` or `torch.FloatTensor`): The input images to be used as the starting point for the image generation process. |
|
control_frames (`List[np.ndarray]` or `torch.FloatTensor`): The ControlNet input images condition to provide guidance to the `unet` for generation. |
|
strength ('float'): SDEdit strength. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the |
|
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting |
|
than for [`~StableDiffusionControlNetPipeline.__call__`]. |
|
guess_mode (`bool`, *optional*, defaults to `False`): |
|
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if |
|
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended. |
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): |
|
The percentage of total steps at which the controlnet starts applying. |
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The percentage of total steps at which the controlnet stops applying. |
|
warp_start (`float`): Shape-aware fusion start timestep. |
|
warp_end (`float`): Shape-aware fusion end timestep. |
|
mask_start (`float`): Pixel-aware fusion start timestep. |
|
mask_end (`float`):Pixel-aware fusion end timestep. |
|
smooth_boundary (`bool`): Smooth fusion boundary. Set `True` to prevent artifacts at boundary. |
|
mask_strength (`float`): Pixel-aware fusion strength. |
|
inner_strength (`float`): Pixel-aware fusion detail level. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet |
|
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 |
|
control_guidance_start, control_guidance_end = ( |
|
mult * [control_guidance_start], |
|
mult * [control_guidance_end], |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
controlnet_conditioning_scale, |
|
control_guidance_start, |
|
control_guidance_end, |
|
) |
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
assert False |
|
else: |
|
assert False |
|
num_images_per_prompt = 1 |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
height, width = None, None |
|
output_frames = [] |
|
self.attn_state.reset() |
|
|
|
|
|
image = self.image_processor.preprocess(frames[0]).to(dtype=torch.float32) |
|
first_image = image[0] |
|
|
|
|
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
control_image = self.prepare_control_image( |
|
image=control_frames[0], |
|
width=width, |
|
height=height, |
|
batch_size=batch_size, |
|
num_images_per_prompt=1, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
else: |
|
assert False |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, cur_num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
latent_timestep = timesteps[:1].repeat(batch_size) |
|
|
|
|
|
latents = self.prepare_latents( |
|
image, |
|
latent_timestep, |
|
batch_size, |
|
num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) |
|
|
|
first_x0_list = [] |
|
|
|
|
|
num_warmup_steps = len(timesteps) - cur_num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=cur_num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
self.attn_state.set_timestep(t.item()) |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=control_image, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
return_dict=False, |
|
) |
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] |
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
alpha_prod_t = self.scheduler.alphas_cumprod[t] |
|
beta_prod_t = 1 - alpha_prod_t |
|
pred_x0 = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) |
|
first_x0 = pred_x0.detach() |
|
first_x0_list.append(first_x0) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
image = latents |
|
|
|
first_result = image |
|
prev_result = image |
|
do_denormalize = [True] * image.shape[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
output_frames.append(image[0]) |
|
|
|
|
|
for idx in range(1, len(frames)): |
|
image = frames[idx] |
|
prev_image = frames[idx - 1] |
|
control_image = control_frames[idx] |
|
|
|
image = self.image_processor.preprocess(image).to(dtype=torch.float32) |
|
prev_image = self.image_processor.preprocess(prev_image).to(dtype=torch.float32) |
|
|
|
warped_0, bwd_occ_0, bwd_flow_0 = get_warped_and_mask( |
|
self.flow_model, first_image, image[0], first_result, False |
|
) |
|
blend_mask_0 = blur(F.max_pool2d(bwd_occ_0, kernel_size=9, stride=1, padding=4)) |
|
blend_mask_0 = torch.clamp(blend_mask_0 + bwd_occ_0, 0, 1) |
|
|
|
warped_pre, bwd_occ_pre, bwd_flow_pre = get_warped_and_mask( |
|
self.flow_model, prev_image[0], image[0], prev_result, False |
|
) |
|
blend_mask_pre = blur(F.max_pool2d(bwd_occ_pre, kernel_size=9, stride=1, padding=4)) |
|
blend_mask_pre = torch.clamp(blend_mask_pre + bwd_occ_pre, 0, 1) |
|
|
|
warp_mask = 1 - F.max_pool2d(blend_mask_0, kernel_size=8) |
|
warp_flow = F.interpolate(bwd_flow_0 / 8.0, scale_factor=1.0 / 8, mode="bilinear") |
|
|
|
|
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
control_image = self.prepare_control_image( |
|
image=control_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size, |
|
num_images_per_prompt=1, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
else: |
|
assert False |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, cur_num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
latent_timestep = timesteps[:1].repeat(batch_size) |
|
|
|
skip_t = int(num_inference_steps * (1 - strength)) |
|
warp_start_t = int(warp_start * num_inference_steps) |
|
warp_end_t = int(warp_end * num_inference_steps) |
|
mask_start_t = int(mask_start * num_inference_steps) |
|
mask_end_t = int(mask_end * num_inference_steps) |
|
|
|
|
|
init_latents = self.prepare_latents( |
|
image, |
|
latent_timestep, |
|
batch_size, |
|
num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - cur_num_inference_steps * self.scheduler.order |
|
|
|
def denoising_loop(latents, mask=None, xtrg=None, noise_rescale=None): |
|
dir_xt = 0 |
|
latents_dtype = latents.dtype |
|
with self.progress_bar(total=cur_num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
self.attn_state.set_timestep(t.item()) |
|
if i + skip_t >= mask_start_t and i + skip_t <= mask_end_t and xtrg is not None: |
|
rescale = torch.maximum(1.0 - mask, (1 - mask**2) ** 0.5 * inner_strength) |
|
if noise_rescale is not None: |
|
rescale = (1.0 - mask) * (1 - noise_rescale) + rescale * noise_rescale |
|
noise = randn_tensor(xtrg.shape, generator=generator, device=device, dtype=xtrg.dtype) |
|
latents_ref = self.scheduler.add_noise(xtrg, noise, t) |
|
latents = latents_ref * mask + (1.0 - mask) * (latents - dir_xt) + rescale * dir_xt |
|
latents = latents.to(latents_dtype) |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=control_image, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
return_dict=False, |
|
) |
|
|
|
if guess_mode and do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [ |
|
torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples |
|
] |
|
mid_block_res_sample = torch.cat( |
|
[torch.zeros_like(mid_block_res_sample), mid_block_res_sample] |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
alpha_prod_t = self.scheduler.alphas_cumprod[t] |
|
beta_prod_t = 1 - alpha_prod_t |
|
pred_x0 = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) |
|
|
|
if i + skip_t >= warp_start_t and i + skip_t <= warp_end_t: |
|
|
|
pred_x0 = ( |
|
flow_warp(first_x0_list[i], warp_flow, mode="nearest") * warp_mask |
|
+ (1 - warp_mask) * pred_x0 |
|
) |
|
|
|
|
|
latents = self.scheduler.add_noise(pred_x0, noise_pred, t).to(latents_dtype) |
|
|
|
prev_t = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps |
|
if i == len(timesteps) - 1: |
|
alpha_t_prev = 1.0 |
|
else: |
|
alpha_t_prev = self.scheduler.alphas_cumprod[prev_t] |
|
|
|
dir_xt = (1.0 - alpha_t_prev) ** 0.5 * noise_pred |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[ |
|
0 |
|
] |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
return latents |
|
|
|
if mask_start_t <= mask_end_t: |
|
self.attn_state.to_load() |
|
else: |
|
self.attn_state.to_load_and_store_prev() |
|
latents = denoising_loop(init_latents) |
|
|
|
if mask_start_t <= mask_end_t: |
|
direct_result = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
blend_results = (1 - blend_mask_pre) * warped_pre + blend_mask_pre * direct_result |
|
blend_results = (1 - blend_mask_0) * warped_0 + blend_mask_0 * blend_results |
|
|
|
bwd_occ = 1 - torch.clamp(1 - bwd_occ_pre + 1 - bwd_occ_0, 0, 1) |
|
blend_mask = blur(F.max_pool2d(bwd_occ, kernel_size=9, stride=1, padding=4)) |
|
blend_mask = 1 - torch.clamp(blend_mask + bwd_occ, 0, 1) |
|
|
|
blend_results = blend_results.to(latents.dtype) |
|
xtrg = self.vae.encode(blend_results).latent_dist.sample(generator) |
|
xtrg = self.vae.config.scaling_factor * xtrg |
|
blend_results_rec = self.vae.decode(xtrg / self.vae.config.scaling_factor, return_dict=False)[0] |
|
xtrg_rec = self.vae.encode(blend_results_rec).latent_dist.sample(generator) |
|
xtrg_rec = self.vae.config.scaling_factor * xtrg_rec |
|
xtrg_ = xtrg + (xtrg - xtrg_rec) |
|
blend_results_rec_new = self.vae.decode(xtrg_ / self.vae.config.scaling_factor, return_dict=False)[0] |
|
tmp = (abs(blend_results_rec_new - blend_results).mean(dim=1, keepdims=True) > 0.25).float() |
|
|
|
mask_x = F.max_pool2d( |
|
(F.interpolate(tmp, scale_factor=1 / 8.0, mode="bilinear") > 0).float(), |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
mask = 1 - F.max_pool2d(1 - blend_mask, kernel_size=8) |
|
|
|
if smooth_boundary: |
|
noise_rescale = find_flat_region(mask) |
|
else: |
|
noise_rescale = torch.ones_like(mask) |
|
|
|
xtrg = (xtrg + (1 - mask_x) * (xtrg - xtrg_rec)) * mask |
|
xtrg = xtrg.to(latents.dtype) |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, cur_num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
|
|
self.attn_state.to_load_and_store_prev() |
|
latents = denoising_loop(init_latents, mask * mask_strength, xtrg, noise_rescale) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
image = latents |
|
|
|
prev_result = image |
|
|
|
do_denormalize = [True] * image.shape[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
output_frames.append(image[0]) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return output_frames |
|
|
|
return TextToVideoSDPipelineOutput(frames=output_frames) |
|
|