|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker |
|
from diffusers.schedulers import LCMScheduler |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> import numpy as np |
|
|
|
>>> from diffusers import DiffusionPipeline |
|
|
|
>>> pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_interpolate") |
|
>>> # To save GPU memory, torch.float16 can be used, but it may compromise image quality. |
|
>>> pipe.to(torch_device="cuda", torch_dtype=torch.float32) |
|
|
|
>>> prompts = ["A cat", "A dog", "A horse"] |
|
>>> num_inference_steps = 4 |
|
>>> num_interpolation_steps = 24 |
|
>>> seed = 1337 |
|
|
|
>>> torch.manual_seed(seed) |
|
>>> np.random.seed(seed) |
|
|
|
>>> images = pipe( |
|
prompt=prompts, |
|
height=512, |
|
width=512, |
|
num_inference_steps=num_inference_steps, |
|
num_interpolation_steps=num_interpolation_steps, |
|
guidance_scale=8.0, |
|
embedding_interpolation_type="lerp", |
|
latent_interpolation_type="slerp", |
|
process_batch_size=4, # Make it higher or lower based on your GPU memory |
|
generator=torch.Generator(seed), |
|
) |
|
|
|
>>> # Save the images as a video |
|
>>> import imageio |
|
>>> from PIL import Image |
|
|
|
>>> def pil_to_video(images: List[Image.Image], filename: str, fps: int = 60) -> None: |
|
frames = [np.array(image) for image in images] |
|
with imageio.get_writer(filename, fps=fps) as video_writer: |
|
for frame in frames: |
|
video_writer.append_data(frame) |
|
|
|
>>> pil_to_video(images, "lcm_interpolate.mp4", fps=24) |
|
``` |
|
""" |
|
|
|
|
|
def lerp( |
|
v0: Union[torch.Tensor, np.ndarray], |
|
v1: Union[torch.Tensor, np.ndarray], |
|
t: Union[float, torch.Tensor, np.ndarray], |
|
) -> Union[torch.Tensor, np.ndarray]: |
|
""" |
|
Linearly interpolate between two vectors/tensors. |
|
|
|
Args: |
|
v0 (`torch.Tensor` or `np.ndarray`): First vector/tensor. |
|
v1 (`torch.Tensor` or `np.ndarray`): Second vector/tensor. |
|
t: (`float`, `torch.Tensor`, or `np.ndarray`): |
|
Interpolation factor. If float, must be between 0 and 1. If np.ndarray or |
|
torch.Tensor, must be one dimensional with values between 0 and 1. |
|
|
|
Returns: |
|
Union[torch.Tensor, np.ndarray] |
|
Interpolated vector/tensor between v0 and v1. |
|
""" |
|
inputs_are_torch = False |
|
t_is_float = False |
|
|
|
if isinstance(v0, torch.Tensor): |
|
inputs_are_torch = True |
|
input_device = v0.device |
|
v0 = v0.cpu().numpy() |
|
v1 = v1.cpu().numpy() |
|
|
|
if isinstance(t, torch.Tensor): |
|
inputs_are_torch = True |
|
input_device = t.device |
|
t = t.cpu().numpy() |
|
elif isinstance(t, float): |
|
t_is_float = True |
|
t = np.array([t]) |
|
|
|
t = t[..., None] |
|
v0 = v0[None, ...] |
|
v1 = v1[None, ...] |
|
v2 = (1 - t) * v0 + t * v1 |
|
|
|
if t_is_float and v0.ndim > 1: |
|
assert v2.shape[0] == 1 |
|
v2 = np.squeeze(v2, axis=0) |
|
if inputs_are_torch: |
|
v2 = torch.from_numpy(v2).to(input_device) |
|
|
|
return v2 |
|
|
|
|
|
def slerp( |
|
v0: Union[torch.Tensor, np.ndarray], |
|
v1: Union[torch.Tensor, np.ndarray], |
|
t: Union[float, torch.Tensor, np.ndarray], |
|
DOT_THRESHOLD=0.9995, |
|
) -> Union[torch.Tensor, np.ndarray]: |
|
""" |
|
Spherical linear interpolation between two vectors/tensors. |
|
|
|
Args: |
|
v0 (`torch.Tensor` or `np.ndarray`): First vector/tensor. |
|
v1 (`torch.Tensor` or `np.ndarray`): Second vector/tensor. |
|
t: (`float`, `torch.Tensor`, or `np.ndarray`): |
|
Interpolation factor. If float, must be between 0 and 1. If np.ndarray or |
|
torch.Tensor, must be one dimensional with values between 0 and 1. |
|
DOT_THRESHOLD (`float`, *optional*, default=0.9995): |
|
Threshold for when to use linear interpolation instead of spherical interpolation. |
|
|
|
Returns: |
|
`torch.Tensor` or `np.ndarray`: |
|
Interpolated vector/tensor between v0 and v1. |
|
""" |
|
inputs_are_torch = False |
|
t_is_float = False |
|
|
|
if isinstance(v0, torch.Tensor): |
|
inputs_are_torch = True |
|
input_device = v0.device |
|
v0 = v0.cpu().numpy() |
|
v1 = v1.cpu().numpy() |
|
|
|
if isinstance(t, torch.Tensor): |
|
inputs_are_torch = True |
|
input_device = t.device |
|
t = t.cpu().numpy() |
|
elif isinstance(t, float): |
|
t_is_float = True |
|
t = np.array([t], dtype=v0.dtype) |
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) |
|
if np.abs(dot) > DOT_THRESHOLD: |
|
|
|
|
|
v2 = lerp(v0, v1, t) |
|
else: |
|
theta_0 = np.arccos(dot) |
|
sin_theta_0 = np.sin(theta_0) |
|
theta_t = theta_0 * t |
|
sin_theta_t = np.sin(theta_t) |
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0 |
|
s1 = sin_theta_t / sin_theta_0 |
|
s0 = s0[..., None] |
|
s1 = s1[..., None] |
|
v0 = v0[None, ...] |
|
v1 = v1[None, ...] |
|
v2 = s0 * v0 + s1 * v1 |
|
|
|
if t_is_float and v0.ndim > 1: |
|
assert v2.shape[0] == 1 |
|
v2 = np.squeeze(v2, axis=0) |
|
if inputs_are_torch: |
|
v2 = torch.from_numpy(v2).to(input_device) |
|
|
|
return v2 |
|
|
|
|
|
class LatentConsistencyModelWalkPipeline( |
|
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin |
|
): |
|
r""" |
|
Pipeline for text-to-image generation using a latent consistency model. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only |
|
supports [`LCMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co./runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
requires_safety_checker (`bool`, *optional*, defaults to `True`): |
|
Whether the pipeline requires a safety checker component. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->unet->vae" |
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
_exclude_from_cpu_offload = ["safety_checker"] |
|
_callback_tensor_inputs = ["latents", "denoised", "prompt_embeds", "w_embedding"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: LCMScheduler, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
|
|
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): |
|
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. |
|
|
|
The suffixes after the scaling factors represent the stages where they are being applied. |
|
|
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values |
|
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. |
|
|
|
Args: |
|
s1 (`float`): |
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
s2 (`float`): |
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
if not hasattr(self, "unet"): |
|
raise ValueError("The pipeline must have `unet` for using FreeU.") |
|
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) |
|
|
|
|
|
def disable_freeu(self): |
|
"""Disables the FreeU mechanism if enabled.""" |
|
self.unet.disable_freeu() |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
timesteps (`torch.Tensor`): |
|
generate embedding vectors at these timesteps |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
dimension of the embeddings to generate |
|
dtype: |
|
data type of the generated embeddings |
|
|
|
Returns: |
|
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: int, |
|
width: int, |
|
callback_steps: int, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
@torch.no_grad() |
|
def interpolate_embedding( |
|
self, |
|
start_embedding: torch.FloatTensor, |
|
end_embedding: torch.FloatTensor, |
|
num_interpolation_steps: Union[int, List[int]], |
|
interpolation_type: str, |
|
) -> torch.FloatTensor: |
|
if interpolation_type == "lerp": |
|
interpolation_fn = lerp |
|
elif interpolation_type == "slerp": |
|
interpolation_fn = slerp |
|
else: |
|
raise ValueError( |
|
f"embedding_interpolation_type must be one of ['lerp', 'slerp'], got {interpolation_type}." |
|
) |
|
|
|
embedding = torch.cat([start_embedding, end_embedding]) |
|
steps = torch.linspace(0, 1, num_interpolation_steps, dtype=embedding.dtype).cpu().numpy() |
|
steps = np.expand_dims(steps, axis=tuple(range(1, embedding.ndim))) |
|
interpolations = [] |
|
|
|
|
|
|
|
|
|
for i in range(embedding.shape[0] - 1): |
|
interpolations.append(interpolation_fn(embedding[i], embedding[i + 1], steps).squeeze(dim=1)) |
|
|
|
interpolations = torch.cat(interpolations) |
|
return interpolations |
|
|
|
@torch.no_grad() |
|
def interpolate_latent( |
|
self, |
|
start_latent: torch.FloatTensor, |
|
end_latent: torch.FloatTensor, |
|
num_interpolation_steps: Union[int, List[int]], |
|
interpolation_type: str, |
|
) -> torch.FloatTensor: |
|
if interpolation_type == "lerp": |
|
interpolation_fn = lerp |
|
elif interpolation_type == "slerp": |
|
interpolation_fn = slerp |
|
|
|
latent = torch.cat([start_latent, end_latent]) |
|
steps = torch.linspace(0, 1, num_interpolation_steps, dtype=latent.dtype).cpu().numpy() |
|
steps = np.expand_dims(steps, axis=tuple(range(1, latent.ndim))) |
|
interpolations = [] |
|
|
|
|
|
|
|
|
|
for i in range(latent.shape[0] - 1): |
|
interpolations.append(interpolation_fn(latent[i], latent[i + 1], steps).squeeze(dim=1)) |
|
|
|
return torch.cat(interpolations) |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 4, |
|
num_interpolation_steps: int = 8, |
|
original_inference_steps: int = None, |
|
guidance_scale: float = 8.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
embedding_interpolation_type: str = "lerp", |
|
latent_interpolation_type: str = "slerp", |
|
process_batch_size: int = 4, |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
original_inference_steps (`int`, *optional*): |
|
The original number of inference steps use to generate a linearly-spaced timestep schedule, from which |
|
we will draw `num_inference_steps` evenly spaced timesteps from as our final timestep schedule, |
|
following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the |
|
scheduler's `original_inference_steps` attribute. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
Note that the original latent consistency models paper uses a different CFG formulation where the |
|
guidance scales are decreased by 1 (so in the paper formulation CFG is enabled when `guidance_scale > |
|
0`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeine class. |
|
embedding_interpolation_type (`str`, *optional*, defaults to `"lerp"`): |
|
The type of interpolation to use for interpolating between text embeddings. Choose between `"lerp"` and `"slerp"`. |
|
latent_interpolation_type (`str`, *optional*, defaults to `"slerp"`): |
|
The type of interpolation to use for interpolating between latents. Choose between `"lerp"` and `"slerp"`. |
|
process_batch_size (`int`, *optional*, defaults to 4): |
|
The batch size to use for processing the images. This is useful when generating a large number of images |
|
and you want to avoid running out of memory. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(prompt, height, width, callback_steps, prompt_embeds, callback_on_step_end_tensor_inputs) |
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
if batch_size < 2: |
|
raise ValueError(f"`prompt` must have length of atleast 2 but found {batch_size}") |
|
if num_images_per_prompt != 1: |
|
raise ValueError("`num_images_per_prompt` must be `1` as no other value is supported yet") |
|
if prompt_embeds is not None: |
|
raise ValueError("`prompt_embeds` must be None since it is not supported yet") |
|
if latents is not None: |
|
raise ValueError("`latents` must be None since it is not supported yet") |
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device, original_inference_steps=original_inference_steps) |
|
timesteps = self.scheduler.timesteps |
|
num_channels_latents = self.unet.config.in_channels |
|
|
|
|
|
|
|
prompt_embeds_1, _ = self.encode_prompt( |
|
prompt[:1], |
|
device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=False, |
|
negative_prompt=None, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=None, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
latents_1 = self.prepare_latents( |
|
1, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds_1.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, None) |
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
images = [] |
|
|
|
|
|
|
|
with self.progress_bar(total=batch_size - 1) as prompt_progress_bar: |
|
for i in range(1, batch_size): |
|
|
|
prompt_embeds_2, _ = self.encode_prompt( |
|
prompt[i : i + 1], |
|
device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=False, |
|
negative_prompt=None, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=None, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
latents_2 = self.prepare_latents( |
|
1, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds_2.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
inference_embeddings = self.interpolate_embedding( |
|
start_embedding=prompt_embeds_1, |
|
end_embedding=prompt_embeds_2, |
|
num_interpolation_steps=num_interpolation_steps, |
|
interpolation_type=embedding_interpolation_type, |
|
) |
|
inference_latents = self.interpolate_latent( |
|
start_latent=latents_1, |
|
end_latent=latents_2, |
|
num_interpolation_steps=num_interpolation_steps, |
|
interpolation_type=latent_interpolation_type, |
|
) |
|
next_prompt_embeds = inference_embeddings[-1:].detach().clone() |
|
next_latents = inference_latents[-1:].detach().clone() |
|
bs = num_interpolation_steps |
|
|
|
|
|
|
|
|
|
with self.progress_bar( |
|
total=(bs + process_batch_size - 1) // process_batch_size |
|
) as batch_progress_bar: |
|
for batch_index in range(0, bs, process_batch_size): |
|
batch_inference_latents = inference_latents[batch_index : batch_index + process_batch_size] |
|
batch_inference_embedddings = inference_embeddings[ |
|
batch_index : batch_index + process_batch_size |
|
] |
|
|
|
self.scheduler.set_timesteps( |
|
num_inference_steps, device, original_inference_steps=original_inference_steps |
|
) |
|
timesteps = self.scheduler.timesteps |
|
|
|
current_bs = batch_inference_embedddings.shape[0] |
|
w = torch.tensor(self.guidance_scale - 1).repeat(current_bs) |
|
w_embedding = self.get_guidance_scale_embedding( |
|
w, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents_1.dtype) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for index, t in enumerate(timesteps): |
|
batch_inference_latents = batch_inference_latents.to(batch_inference_embedddings.dtype) |
|
|
|
|
|
model_pred = self.unet( |
|
batch_inference_latents, |
|
t, |
|
timestep_cond=w_embedding, |
|
encoder_hidden_states=batch_inference_embedddings, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
batch_inference_latents, denoised = self.scheduler.step( |
|
model_pred, t, batch_inference_latents, **extra_step_kwargs, return_dict=False |
|
) |
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, index, t, callback_kwargs) |
|
|
|
batch_inference_latents = callback_outputs.pop("latents", batch_inference_latents) |
|
batch_inference_embedddings = callback_outputs.pop( |
|
"prompt_embeds", batch_inference_embedddings |
|
) |
|
w_embedding = callback_outputs.pop("w_embedding", w_embedding) |
|
denoised = callback_outputs.pop("denoised", denoised) |
|
|
|
|
|
if index == len(timesteps) - 1 or ( |
|
(index + 1) > num_warmup_steps and (index + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and index % callback_steps == 0: |
|
step_idx = index // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, batch_inference_latents) |
|
|
|
denoised = denoised.to(batch_inference_embedddings.dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0] |
|
do_denormalize = [True] * image.shape[0] |
|
has_nsfw_concept = None |
|
|
|
image = self.image_processor.postprocess( |
|
image, output_type=output_type, do_denormalize=do_denormalize |
|
) |
|
images.append(image) |
|
|
|
batch_progress_bar.update() |
|
|
|
prompt_embeds_1 = next_prompt_embeds |
|
latents_1 = next_latents |
|
|
|
prompt_progress_bar.update() |
|
|
|
|
|
if output_type == "pil": |
|
images = [image for image_list in images for image in image_list] |
|
elif output_type == "np": |
|
images = np.concatenate(images) |
|
elif output_type == "pt": |
|
images = torch.cat(images) |
|
else: |
|
raise ValueError("`output_type` must be one of 'pil', 'np' or 'pt'.") |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (images, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) |
|
|