|
import math |
|
import tempfile |
|
from typing import List, Optional |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from accelerate import Accelerator |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel |
|
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin |
|
from diffusers.models.attention_processor import ( |
|
AttnAddedKVProcessor, |
|
AttnAddedKVProcessor2_0, |
|
LoRAAttnAddedKVProcessor, |
|
LoRAAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
SlicedAttnAddedKVProcessor, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
|
|
|
|
class SdeDragPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for image drag-and-drop editing using stochastic differential equations: https://arxiv.org/abs/2311.01410. |
|
Please refer to the [official repository](https://github.com/ML-GSAI/SDE-Drag) for more information. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Please use |
|
[`DDIMScheduler`]. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: DPMSolverMultistepScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: str, |
|
image: PIL.Image.Image, |
|
mask_image: PIL.Image.Image, |
|
source_points: List[List[int]], |
|
target_points: List[List[int]], |
|
t0: Optional[float] = 0.6, |
|
steps: Optional[int] = 200, |
|
step_size: Optional[int] = 2, |
|
image_scale: Optional[float] = 0.3, |
|
adapt_radius: Optional[int] = 5, |
|
min_lora_scale: Optional[float] = 0.5, |
|
generator: Optional[torch.Generator] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for image editing. |
|
Args: |
|
prompt (`str`, *required*): |
|
The prompt to guide the image editing. |
|
image (`PIL.Image.Image`, *required*): |
|
Which will be edited, parts of the image will be masked out with `mask_image` and edited |
|
according to `prompt`. |
|
mask_image (`PIL.Image.Image`, *required*): |
|
To mask `image`. White pixels in the mask will be edited, while black pixels will be preserved. |
|
source_points (`List[List[int]]`, *required*): |
|
Used to mark the starting positions of drag editing in the image, with each pixel represented as a |
|
`List[int]` of length 2. |
|
target_points (`List[List[int]]`, *required*): |
|
Used to mark the target positions of drag editing in the image, with each pixel represented as a |
|
`List[int]` of length 2. |
|
t0 (`float`, *optional*, defaults to 0.6): |
|
The time parameter. Higher t0 improves the fidelity while lowering the faithfulness of the edited images |
|
and vice versa. |
|
steps (`int`, *optional*, defaults to 200): |
|
The number of sampling iterations. |
|
step_size (`int`, *optional*, defaults to 2): |
|
The drag diatance of each drag step. |
|
image_scale (`float`, *optional*, defaults to 0.3): |
|
To avoid duplicating the content, use image_scale to perturbs the source. |
|
adapt_radius (`int`, *optional*, defaults to 5): |
|
The size of the region for copy and paste operations during each step of the drag process. |
|
min_lora_scale (`float`, *optional*, defaults to 0.5): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
min_lora_scale specifies the minimum LoRA scale during the image drag-editing process. |
|
generator ('torch.Generator', *optional*, defaults to None): |
|
To make generation deterministic(https://pytorch.org/docs/stable/generated/torch.Generator.html). |
|
Examples: |
|
```py |
|
>>> import PIL |
|
>>> import torch |
|
>>> from diffusers import DDIMScheduler, DiffusionPipeline |
|
|
|
>>> # Load the pipeline |
|
>>> model_path = "runwayml/stable-diffusion-v1-5" |
|
>>> scheduler = DDIMScheduler.from_pretrained(model_path, subfolder="scheduler") |
|
>>> pipe = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, custom_pipeline="sde_drag") |
|
>>> pipe.to('cuda') |
|
|
|
>>> # To save GPU memory, torch.float16 can be used, but it may compromise image quality. |
|
>>> # If not training LoRA, please avoid using torch.float16 |
|
>>> # pipe.to(torch.float16) |
|
|
|
>>> # Provide prompt, image, mask image, and the starting and target points for drag editing. |
|
>>> prompt = "prompt of the image" |
|
>>> image = PIL.Image.open('/path/to/image') |
|
>>> mask_image = PIL.Image.open('/path/to/mask_image') |
|
>>> source_points = [[123, 456]] |
|
>>> target_points = [[234, 567]] |
|
|
|
>>> # train_lora is optional, and in most cases, using train_lora can better preserve consistency with the original image. |
|
>>> pipe.train_lora(prompt, image) |
|
|
|
>>> output = pipe(prompt, image, mask_image, source_points, target_points) |
|
>>> output_image = PIL.Image.fromarray(output) |
|
>>> output_image.save("./output.png") |
|
``` |
|
""" |
|
|
|
self.scheduler.set_timesteps(steps) |
|
|
|
noise_scale = (1 - image_scale**2) ** (0.5) |
|
|
|
text_embeddings = self._get_text_embed(prompt) |
|
uncond_embeddings = self._get_text_embed([""]) |
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
latent = self._get_img_latent(image) |
|
|
|
mask = mask_image.resize((latent.shape[3], latent.shape[2])) |
|
mask = torch.tensor(np.array(mask)) |
|
mask = mask.unsqueeze(0).expand_as(latent).to(self.device) |
|
|
|
source_points = torch.tensor(source_points).div(torch.tensor([8]), rounding_mode="trunc") |
|
target_points = torch.tensor(target_points).div(torch.tensor([8]), rounding_mode="trunc") |
|
|
|
distance = target_points - source_points |
|
distance_norm_max = torch.norm(distance.float(), dim=1, keepdim=True).max() |
|
|
|
if distance_norm_max <= step_size: |
|
drag_num = 1 |
|
else: |
|
drag_num = distance_norm_max.div(torch.tensor([step_size]), rounding_mode="trunc") |
|
if (distance_norm_max / drag_num - step_size).abs() > ( |
|
distance_norm_max / (drag_num + 1) - step_size |
|
).abs(): |
|
drag_num += 1 |
|
|
|
latents = [] |
|
for i in tqdm(range(int(drag_num)), desc="SDE Drag"): |
|
source_new = source_points + (i / drag_num * distance).to(torch.int) |
|
target_new = source_points + ((i + 1) / drag_num * distance).to(torch.int) |
|
|
|
latent, noises, hook_latents, lora_scales, cfg_scales = self._forward( |
|
latent, steps, t0, min_lora_scale, text_embeddings, generator |
|
) |
|
latent = self._copy_and_paste( |
|
latent, |
|
source_new, |
|
target_new, |
|
adapt_radius, |
|
latent.shape[2] - 1, |
|
latent.shape[3] - 1, |
|
image_scale, |
|
noise_scale, |
|
generator, |
|
) |
|
latent = self._backward( |
|
latent, mask, steps, t0, noises, hook_latents, lora_scales, cfg_scales, text_embeddings, generator |
|
) |
|
|
|
latents.append(latent) |
|
|
|
result_image = 1 / 0.18215 * latents[-1] |
|
|
|
with torch.no_grad(): |
|
result_image = self.vae.decode(result_image).sample |
|
|
|
result_image = (result_image / 2 + 0.5).clamp(0, 1) |
|
result_image = result_image.cpu().permute(0, 2, 3, 1).numpy()[0] |
|
result_image = (result_image * 255).astype(np.uint8) |
|
|
|
return result_image |
|
|
|
def train_lora(self, prompt, image, lora_step=100, lora_rank=16, generator=None): |
|
accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision="fp16") |
|
|
|
self.vae.requires_grad_(False) |
|
self.text_encoder.requires_grad_(False) |
|
self.unet.requires_grad_(False) |
|
|
|
unet_lora_attn_procs = {} |
|
for name, attn_processor in self.unet.attn_processors.items(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = self.unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = self.unet.config.block_out_channels[block_id] |
|
else: |
|
raise NotImplementedError("name must start with up_blocks, mid_blocks, or down_blocks") |
|
|
|
if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)): |
|
lora_attn_processor_class = LoRAAttnAddedKVProcessor |
|
else: |
|
lora_attn_processor_class = ( |
|
LoRAAttnProcessor2_0 |
|
if hasattr(torch.nn.functional, "scaled_dot_product_attention") |
|
else LoRAAttnProcessor |
|
) |
|
unet_lora_attn_procs[name] = lora_attn_processor_class( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank |
|
) |
|
|
|
self.unet.set_attn_processor(unet_lora_attn_procs) |
|
unet_lora_layers = AttnProcsLayers(self.unet.attn_processors) |
|
params_to_optimize = unet_lora_layers.parameters() |
|
|
|
optimizer = torch.optim.AdamW( |
|
params_to_optimize, |
|
lr=2e-4, |
|
betas=(0.9, 0.999), |
|
weight_decay=1e-2, |
|
eps=1e-08, |
|
) |
|
|
|
lr_scheduler = get_scheduler( |
|
"constant", |
|
optimizer=optimizer, |
|
num_warmup_steps=0, |
|
num_training_steps=lora_step, |
|
num_cycles=1, |
|
power=1.0, |
|
) |
|
|
|
unet_lora_layers = accelerator.prepare_model(unet_lora_layers) |
|
optimizer = accelerator.prepare_optimizer(optimizer) |
|
lr_scheduler = accelerator.prepare_scheduler(lr_scheduler) |
|
|
|
with torch.no_grad(): |
|
text_inputs = self._tokenize_prompt(prompt, tokenizer_max_length=None) |
|
text_embedding = self._encode_prompt( |
|
text_inputs.input_ids, text_inputs.attention_mask, text_encoder_use_attention_mask=False |
|
) |
|
|
|
image_transforms = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
image = image_transforms(image).to(self.device, dtype=self.vae.dtype) |
|
image = image.unsqueeze(dim=0) |
|
latents_dist = self.vae.encode(image).latent_dist |
|
|
|
for _ in tqdm(range(lora_step), desc="Train LoRA"): |
|
self.unet.train() |
|
model_input = latents_dist.sample() * self.vae.config.scaling_factor |
|
|
|
|
|
noise = torch.randn( |
|
model_input.size(), |
|
dtype=model_input.dtype, |
|
layout=model_input.layout, |
|
device=model_input.device, |
|
generator=generator, |
|
) |
|
bsz, channels, height, width = model_input.shape |
|
|
|
|
|
timesteps = torch.randint( |
|
0, self.scheduler.config.num_train_timesteps, (bsz,), device=model_input.device, generator=generator |
|
) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_model_input = self.scheduler.add_noise(model_input, noise, timesteps) |
|
|
|
|
|
model_pred = self.unet(noisy_model_input, timesteps, text_embedding).sample |
|
|
|
|
|
if self.scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif self.scheduler.config.prediction_type == "v_prediction": |
|
target = self.scheduler.get_velocity(model_input, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {self.scheduler.config.prediction_type}") |
|
|
|
loss = torch.nn.functional.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
accelerator.backward(loss) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
with tempfile.TemporaryDirectory() as save_lora_dir: |
|
LoraLoaderMixin.save_lora_weights( |
|
save_directory=save_lora_dir, |
|
unet_lora_layers=unet_lora_layers, |
|
text_encoder_lora_layers=None, |
|
) |
|
|
|
self.unet.load_attn_procs(save_lora_dir) |
|
|
|
def _tokenize_prompt(self, prompt, tokenizer_max_length=None): |
|
if tokenizer_max_length is not None: |
|
max_length = tokenizer_max_length |
|
else: |
|
max_length = self.tokenizer.model_max_length |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
truncation=True, |
|
padding="max_length", |
|
max_length=max_length, |
|
return_tensors="pt", |
|
) |
|
|
|
return text_inputs |
|
|
|
def _encode_prompt(self, input_ids, attention_mask, text_encoder_use_attention_mask=False): |
|
text_input_ids = input_ids.to(self.device) |
|
|
|
if text_encoder_use_attention_mask: |
|
attention_mask = attention_mask.to(self.device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids, |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
return prompt_embeds |
|
|
|
@torch.no_grad() |
|
def _get_text_embed(self, prompt): |
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] |
|
return text_embeddings |
|
|
|
def _copy_and_paste( |
|
self, latent, source_new, target_new, adapt_radius, max_height, max_width, image_scale, noise_scale, generator |
|
): |
|
def adaption_r(source, target, adapt_radius, max_height, max_width): |
|
r_x_lower = min(adapt_radius, source[0], target[0]) |
|
r_x_upper = min(adapt_radius, max_width - source[0], max_width - target[0]) |
|
r_y_lower = min(adapt_radius, source[1], target[1]) |
|
r_y_upper = min(adapt_radius, max_height - source[1], max_height - target[1]) |
|
return r_x_lower, r_x_upper, r_y_lower, r_y_upper |
|
|
|
for source_, target_ in zip(source_new, target_new): |
|
r_x_lower, r_x_upper, r_y_lower, r_y_upper = adaption_r( |
|
source_, target_, adapt_radius, max_height, max_width |
|
) |
|
|
|
source_feature = latent[ |
|
:, :, source_[1] - r_y_lower : source_[1] + r_y_upper, source_[0] - r_x_lower : source_[0] + r_x_upper |
|
].clone() |
|
|
|
latent[ |
|
:, :, source_[1] - r_y_lower : source_[1] + r_y_upper, source_[0] - r_x_lower : source_[0] + r_x_upper |
|
] = image_scale * source_feature + noise_scale * torch.randn( |
|
latent.shape[0], |
|
4, |
|
r_y_lower + r_y_upper, |
|
r_x_lower + r_x_upper, |
|
device=self.device, |
|
generator=generator, |
|
) |
|
|
|
latent[ |
|
:, :, target_[1] - r_y_lower : target_[1] + r_y_upper, target_[0] - r_x_lower : target_[0] + r_x_upper |
|
] = source_feature * 1.1 |
|
return latent |
|
|
|
@torch.no_grad() |
|
def _get_img_latent(self, image, height=None, weight=None): |
|
data = image.convert("RGB") |
|
if height is not None: |
|
data = data.resize((weight, height)) |
|
transform = transforms.ToTensor() |
|
data = transform(data).unsqueeze(0) |
|
data = (data * 2.0) - 1.0 |
|
data = data.to(self.device, dtype=self.vae.dtype) |
|
latent = self.vae.encode(data).latent_dist.sample() |
|
latent = 0.18215 * latent |
|
return latent |
|
|
|
@torch.no_grad() |
|
def _get_eps(self, latent, timestep, guidance_scale, text_embeddings, lora_scale=None): |
|
latent_model_input = torch.cat([latent] * 2) if guidance_scale > 1.0 else latent |
|
text_embeddings = text_embeddings if guidance_scale > 1.0 else text_embeddings.chunk(2)[1] |
|
|
|
cross_attention_kwargs = None if lora_scale is None else {"scale": lora_scale} |
|
|
|
with torch.no_grad(): |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
timestep, |
|
encoder_hidden_states=text_embeddings, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
if guidance_scale > 1.0: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
elif guidance_scale == 1.0: |
|
noise_pred_text = noise_pred |
|
noise_pred_uncond = 0.0 |
|
else: |
|
raise NotImplementedError(guidance_scale) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
return noise_pred |
|
|
|
def _forward_sde( |
|
self, timestep, sample, guidance_scale, text_embeddings, steps, eta=1.0, lora_scale=None, generator=None |
|
): |
|
num_train_timesteps = len(self.scheduler) |
|
alphas_cumprod = self.scheduler.alphas_cumprod |
|
initial_alpha_cumprod = torch.tensor(1.0) |
|
|
|
prev_timestep = timestep + num_train_timesteps // steps |
|
|
|
alpha_prod_t = alphas_cumprod[timestep] if timestep >= 0 else initial_alpha_cumprod |
|
alpha_prod_t_prev = alphas_cumprod[prev_timestep] |
|
|
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
x_prev = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) * sample + (1 - alpha_prod_t_prev / alpha_prod_t) ** ( |
|
0.5 |
|
) * torch.randn( |
|
sample.size(), dtype=sample.dtype, layout=sample.layout, device=self.device, generator=generator |
|
) |
|
eps = self._get_eps(x_prev, prev_timestep, guidance_scale, text_embeddings, lora_scale) |
|
|
|
sigma_t_prev = ( |
|
eta |
|
* (1 - alpha_prod_t) ** (0.5) |
|
* (1 - alpha_prod_t_prev / (1 - alpha_prod_t_prev) * (1 - alpha_prod_t) / alpha_prod_t) ** (0.5) |
|
) |
|
|
|
pred_original_sample = (x_prev - beta_prod_t_prev ** (0.5) * eps) / alpha_prod_t_prev ** (0.5) |
|
pred_sample_direction_coeff = (1 - alpha_prod_t - sigma_t_prev**2) ** (0.5) |
|
|
|
noise = ( |
|
sample - alpha_prod_t ** (0.5) * pred_original_sample - pred_sample_direction_coeff * eps |
|
) / sigma_t_prev |
|
|
|
return x_prev, noise |
|
|
|
def _sample( |
|
self, |
|
timestep, |
|
sample, |
|
guidance_scale, |
|
text_embeddings, |
|
steps, |
|
sde=False, |
|
noise=None, |
|
eta=1.0, |
|
lora_scale=None, |
|
generator=None, |
|
): |
|
num_train_timesteps = len(self.scheduler) |
|
alphas_cumprod = self.scheduler.alphas_cumprod |
|
final_alpha_cumprod = torch.tensor(1.0) |
|
|
|
eps = self._get_eps(sample, timestep, guidance_scale, text_embeddings, lora_scale) |
|
|
|
prev_timestep = timestep - num_train_timesteps // steps |
|
|
|
alpha_prod_t = alphas_cumprod[timestep] |
|
alpha_prod_t_prev = alphas_cumprod[prev_timestep] if prev_timestep >= 0 else final_alpha_cumprod |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
sigma_t = ( |
|
eta |
|
* ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** (0.5) |
|
* (1 - alpha_prod_t / alpha_prod_t_prev) ** (0.5) |
|
if sde |
|
else 0 |
|
) |
|
|
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * eps) / alpha_prod_t ** (0.5) |
|
pred_sample_direction_coeff = (1 - alpha_prod_t_prev - sigma_t**2) ** (0.5) |
|
|
|
noise = ( |
|
torch.randn( |
|
sample.size(), dtype=sample.dtype, layout=sample.layout, device=self.device, generator=generator |
|
) |
|
if noise is None |
|
else noise |
|
) |
|
latent = ( |
|
alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction_coeff * eps + sigma_t * noise |
|
) |
|
|
|
return latent |
|
|
|
def _forward(self, latent, steps, t0, lora_scale_min, text_embeddings, generator): |
|
def scale_schedule(begin, end, n, length, type="linear"): |
|
if type == "constant": |
|
return end |
|
elif type == "linear": |
|
return begin + (end - begin) * n / length |
|
elif type == "cos": |
|
factor = (1 - math.cos(n * math.pi / length)) / 2 |
|
return (1 - factor) * begin + factor * end |
|
else: |
|
raise NotImplementedError(type) |
|
|
|
noises = [] |
|
latents = [] |
|
lora_scales = [] |
|
cfg_scales = [] |
|
latents.append(latent) |
|
t0 = int(t0 * steps) |
|
t_begin = steps - t0 |
|
|
|
length = len(self.scheduler.timesteps[t_begin - 1 : -1]) - 1 |
|
index = 1 |
|
for t in self.scheduler.timesteps[t_begin:].flip(dims=[0]): |
|
lora_scale = scale_schedule(1, lora_scale_min, index, length, type="cos") |
|
cfg_scale = scale_schedule(1, 3.0, index, length, type="linear") |
|
latent, noise = self._forward_sde( |
|
t, latent, cfg_scale, text_embeddings, steps, lora_scale=lora_scale, generator=generator |
|
) |
|
|
|
noises.append(noise) |
|
latents.append(latent) |
|
lora_scales.append(lora_scale) |
|
cfg_scales.append(cfg_scale) |
|
index += 1 |
|
return latent, noises, latents, lora_scales, cfg_scales |
|
|
|
def _backward( |
|
self, latent, mask, steps, t0, noises, hook_latents, lora_scales, cfg_scales, text_embeddings, generator |
|
): |
|
t0 = int(t0 * steps) |
|
t_begin = steps - t0 |
|
|
|
hook_latent = hook_latents.pop() |
|
latent = torch.where(mask > 128, latent, hook_latent) |
|
for t in self.scheduler.timesteps[t_begin - 1 : -1]: |
|
latent = self._sample( |
|
t, |
|
latent, |
|
cfg_scales.pop(), |
|
text_embeddings, |
|
steps, |
|
sde=True, |
|
noise=noises.pop(), |
|
lora_scale=lora_scales.pop(), |
|
generator=generator, |
|
) |
|
hook_latent = hook_latents.pop() |
|
latent = torch.where(mask > 128, latent, hook_latent) |
|
return latent |
|
|