|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModel, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import ( |
|
FromSingleFileMixin, |
|
IPAdapterMixin, |
|
StableDiffusionXLLoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
) |
|
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel |
|
from diffusers.models.attention_processor import ( |
|
Attention, |
|
AttnProcessor2_0, |
|
FusedAttnProcessor2_0, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
is_invisible_watermark_available, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
if is_invisible_watermark_available(): |
|
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker |
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from typing import List |
|
|
|
>>> import torch |
|
>>> from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
>>> from PIL import Image |
|
|
|
>>> model_id = "a-r-r-o-w/dreamshaper-xl-turbo" |
|
>>> pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", custom_pipeline="pipeline_sdxl_style_aligned") |
|
>>> pipe = pipe.to("cuda") |
|
|
|
# Enable memory saving techniques |
|
>>> pipe.enable_vae_slicing() |
|
>>> pipe.enable_vae_tiling() |
|
|
|
>>> prompt = [ |
|
... "a toy train. macro photo. 3d game asset", |
|
... "a toy airplane. macro photo. 3d game asset", |
|
... "a toy bicycle. macro photo. 3d game asset", |
|
... "a toy car. macro photo. 3d game asset", |
|
... ] |
|
>>> negative_prompt = "low quality, worst quality, " |
|
|
|
>>> # Enable StyleAligned |
|
>>> pipe.enable_style_aligned( |
|
... share_group_norm=False, |
|
... share_layer_norm=False, |
|
... share_attention=True, |
|
... adain_queries=True, |
|
... adain_keys=True, |
|
... adain_values=False, |
|
... full_attention_share=False, |
|
... shared_score_scale=1.0, |
|
... shared_score_shift=0.0, |
|
... only_self_level=0.0, |
|
>>> ) |
|
|
|
>>> # Run inference |
|
>>> images = pipe( |
|
... prompt=prompt, |
|
... negative_prompt=negative_prompt, |
|
... guidance_scale=2, |
|
... height=1024, |
|
... width=1024, |
|
... num_inference_steps=10, |
|
... generator=torch.Generator().manual_seed(42), |
|
>>> ).images |
|
|
|
>>> # Disable StyleAligned if you do not wish to use it anymore |
|
>>> pipe.disable_style_aligned() |
|
``` |
|
""" |
|
|
|
|
|
def expand_first(feat: torch.Tensor, scale: float = 1.0) -> torch.Tensor: |
|
b = feat.shape[0] |
|
feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1) |
|
if scale == 1: |
|
feat_style = feat_style.expand(2, b // 2, *feat.shape[1:]) |
|
else: |
|
feat_style = feat_style.repeat(1, b // 2, 1, 1, 1) |
|
feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1) |
|
return feat_style.reshape(*feat.shape) |
|
|
|
|
|
def concat_first(feat: torch.Tensor, dim: int = 2, scale: float = 1.0) -> torch.Tensor: |
|
feat_style = expand_first(feat, scale=scale) |
|
return torch.cat((feat, feat_style), dim=dim) |
|
|
|
|
|
def calc_mean_std(feat: torch.Tensor, eps: float = 1e-5) -> tuple[torch.Tensor, torch.Tensor]: |
|
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt() |
|
feat_mean = feat.mean(dim=-2, keepdims=True) |
|
return feat_mean, feat_std |
|
|
|
|
|
def adain(feat: torch.Tensor) -> torch.Tensor: |
|
feat_mean, feat_std = calc_mean_std(feat) |
|
feat_style_mean = expand_first(feat_mean) |
|
feat_style_std = expand_first(feat_std) |
|
feat = (feat - feat_mean) / feat_std |
|
feat = feat * feat_style_std + feat_style_mean |
|
return feat |
|
|
|
|
|
def get_switch_vec(total_num_layers, level): |
|
if level == 0: |
|
return torch.zeros(total_num_layers, dtype=torch.bool) |
|
if level == 1: |
|
return torch.ones(total_num_layers, dtype=torch.bool) |
|
to_flip = level > 0.5 |
|
if to_flip: |
|
level = 1 - level |
|
num_switch = int(level * total_num_layers) |
|
vec = torch.arange(total_num_layers) |
|
vec = vec % (total_num_layers // num_switch) |
|
vec = vec == 0 |
|
if to_flip: |
|
vec = ~vec |
|
return vec |
|
|
|
|
|
class SharedAttentionProcessor(AttnProcessor2_0): |
|
def __init__( |
|
self, |
|
share_attention: bool = True, |
|
adain_queries: bool = True, |
|
adain_keys: bool = True, |
|
adain_values: bool = False, |
|
full_attention_share: bool = False, |
|
shared_score_scale: float = 1.0, |
|
shared_score_shift: float = 0.0, |
|
): |
|
r"""Shared Attention Processor as proposed in the StyleAligned paper.""" |
|
super().__init__() |
|
self.share_attention = share_attention |
|
self.adain_queries = adain_queries |
|
self.adain_keys = adain_keys |
|
self.adain_values = adain_values |
|
self.full_attention_share = full_attention_share |
|
self.shared_score_scale = shared_score_scale |
|
self.shared_score_shift = shared_score_shift |
|
|
|
def shifted_scaled_dot_product_attention( |
|
self, attn: Attention, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor |
|
) -> torch.Tensor: |
|
logits = torch.einsum("bhqd,bhkd->bhqk", query, key) * attn.scale |
|
logits[:, :, :, query.shape[2] :] += self.shared_score_shift |
|
probs = logits.softmax(-1) |
|
return torch.einsum("bhqk,bhkd->bhqd", probs, value) |
|
|
|
def shared_call( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
): |
|
residual = hidden_states |
|
input_ndim = hidden_states.ndim |
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if self.adain_queries: |
|
query = adain(query) |
|
if self.adain_keys: |
|
key = adain(key) |
|
if self.adain_values: |
|
value = adain(value) |
|
if self.share_attention: |
|
key = concat_first(key, -2, scale=self.shared_score_scale) |
|
value = concat_first(value, -2) |
|
if self.shared_score_shift != 0: |
|
hidden_states = self.shifted_scaled_dot_product_attention(attn, query, key, value) |
|
else: |
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
else: |
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
return hidden_states |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
): |
|
if self.full_attention_share: |
|
b, n, d = hidden_states.shape |
|
k = 2 |
|
hidden_states = hidden_states.view(k, b, n, d).permute(0, 1, 3, 2).contiguous().view(-1, n, d) |
|
|
|
hidden_states = super().__call__( |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**kwargs, |
|
) |
|
hidden_states = hidden_states.view(k, b, n, d).permute(0, 1, 3, 2).contiguous().view(-1, n, d) |
|
|
|
else: |
|
hidden_states = self.shared_call(attn, hidden_states, hidden_states, attention_mask, **kwargs) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, |
|
`timesteps` must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` |
|
must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
class StyleAlignedSDXLPipeline( |
|
DiffusionPipeline, |
|
FromSingleFileMixin, |
|
StableDiffusionXLLoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
IPAdapterMixin, |
|
): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion XL. |
|
|
|
This pipeline also adds experimental support for [StyleAligned](https://arxiv.org/abs/2312.02133). It can |
|
be enabled/disabled using `.enable_style_aligned()` or `.disable_style_aligned()` respectively. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion XL uses the text portion of |
|
[CLIP](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14) variant. |
|
text_encoder_2 ([` CLIPTextModelWithProjection`]): |
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of |
|
[CLIP](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
specifically the |
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co./laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) |
|
variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_2 (`CLIPTokenizer`): |
|
Second Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): |
|
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of |
|
`stabilityai/stable-diffusion-xl-base-1-0`. |
|
add_watermarker (`bool`, *optional*): |
|
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to |
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no |
|
watermarker will be used. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" |
|
_optional_components = [ |
|
"tokenizer", |
|
"tokenizer_2", |
|
"text_encoder", |
|
"text_encoder_2", |
|
"image_encoder", |
|
"feature_extractor", |
|
] |
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
"add_text_embeds", |
|
"add_time_ids", |
|
"negative_pooled_prompt_embeds", |
|
"negative_add_time_ids", |
|
] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
tokenizer_2: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
feature_extractor: CLIPImageProcessor = None, |
|
force_zeros_for_empty_prompt: bool = True, |
|
add_watermarker: Optional[bool] = None, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
unet=unet, |
|
scheduler=scheduler, |
|
image_encoder=image_encoder, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.mask_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True |
|
) |
|
|
|
self.default_sample_size = self.unet.config.sample_size |
|
|
|
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() |
|
|
|
if add_watermarker: |
|
self.watermark = StableDiffusionXLWatermarker() |
|
else: |
|
self.watermark = None |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: str, |
|
prompt_2: Optional[str] = None, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if self.text_encoder is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
prompt_embeds_list = [] |
|
prompts = [prompt, prompt_2] |
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, tokenizer) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
if clip_skip is None: |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
else: |
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt |
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
elif do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
|
|
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
negative_prompt_2 = ( |
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 |
|
) |
|
|
|
uncond_tokens: List[str] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
|
|
negative_prompt_embeds_list = [] |
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
if self.text_encoder_2 is not None: |
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
else: |
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
if self.text_encoder_2 is not None: |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
else: |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
if do_classifier_free_guidance: |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): |
|
|
|
if denoising_start is None: |
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
else: |
|
t_start = 0 |
|
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
|
|
|
|
|
if denoising_start is not None: |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (denoising_start * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
|
|
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() |
|
if self.scheduler.order == 2 and num_inference_steps % 2 == 0: |
|
|
|
|
|
|
|
|
|
|
|
|
|
num_inference_steps = num_inference_steps + 1 |
|
|
|
|
|
timesteps = timesteps[-num_inference_steps:] |
|
return timesteps, num_inference_steps |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def prepare_latents( |
|
self, |
|
image, |
|
mask, |
|
width, |
|
height, |
|
num_channels_latents, |
|
timestep, |
|
batch_size, |
|
num_images_per_prompt, |
|
dtype, |
|
device, |
|
generator=None, |
|
add_noise=True, |
|
latents=None, |
|
is_strength_max=True, |
|
return_noise=False, |
|
return_image_latents=False, |
|
): |
|
batch_size *= num_images_per_prompt |
|
|
|
if image is None: |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
elif mask is None: |
|
if not isinstance(image, (torch.Tensor, Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.text_encoder_2.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if image.shape[1] == 4: |
|
init_latents = image |
|
|
|
else: |
|
|
|
if self.vae.config.force_upcast: |
|
image = image.float() |
|
self.vae.to(dtype=torch.float32) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
elif isinstance(generator, list): |
|
init_latents = [ |
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
if self.vae.config.force_upcast: |
|
self.vae.to(dtype) |
|
|
|
init_latents = init_latents.to(dtype) |
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0] |
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
if add_noise: |
|
shape = init_latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
|
|
latents = init_latents |
|
return latents |
|
|
|
else: |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if (image is None or timestep is None) and not is_strength_max: |
|
raise ValueError( |
|
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." |
|
"However, either the image or the noise timestep has not been provided." |
|
) |
|
|
|
if image.shape[1] == 4: |
|
image_latents = image.to(device=device, dtype=dtype) |
|
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) |
|
elif return_image_latents or (latents is None and not is_strength_max): |
|
image = image.to(device=device, dtype=dtype) |
|
image_latents = self._encode_vae_image(image=image, generator=generator) |
|
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) |
|
|
|
if latents is None and add_noise: |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) |
|
|
|
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents |
|
elif add_noise: |
|
noise = latents.to(device) |
|
latents = noise * self.scheduler.init_noise_sigma |
|
else: |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = image_latents.to(device) |
|
|
|
outputs = (latents,) |
|
|
|
if return_noise: |
|
outputs += (noise,) |
|
|
|
if return_image_latents: |
|
outputs += (image_latents,) |
|
|
|
return outputs |
|
|
|
def prepare_mask_latents( |
|
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance |
|
): |
|
|
|
|
|
|
|
mask = torch.nn.functional.interpolate( |
|
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
) |
|
mask = mask.to(device=device, dtype=dtype) |
|
|
|
|
|
if mask.shape[0] < batch_size: |
|
if not batch_size % mask.shape[0] == 0: |
|
raise ValueError( |
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" |
|
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" |
|
" of masks that you pass is divisible by the total requested batch size." |
|
) |
|
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) |
|
|
|
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask |
|
|
|
if masked_image is not None and masked_image.shape[1] == 4: |
|
masked_image_latents = masked_image |
|
else: |
|
masked_image_latents = None |
|
|
|
if masked_image is not None: |
|
if masked_image_latents is None: |
|
masked_image = masked_image.to(device=device, dtype=dtype) |
|
masked_image_latents = self._encode_vae_image(masked_image, generator=generator) |
|
|
|
if masked_image_latents.shape[0] < batch_size: |
|
if not batch_size % masked_image_latents.shape[0] == 0: |
|
raise ValueError( |
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated" |
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." |
|
" Make sure the number of images that you pass is divisible by the total requested batch size." |
|
) |
|
masked_image_latents = masked_image_latents.repeat( |
|
batch_size // masked_image_latents.shape[0], 1, 1, 1 |
|
) |
|
|
|
masked_image_latents = ( |
|
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents |
|
) |
|
|
|
|
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) |
|
|
|
return mask, masked_image_latents |
|
|
|
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): |
|
dtype = image.dtype |
|
if self.vae.config.force_upcast: |
|
image = image.float() |
|
self.vae.to(dtype=torch.float32) |
|
|
|
if isinstance(generator, list): |
|
image_latents = [ |
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
for i in range(image.shape[0]) |
|
] |
|
image_latents = torch.cat(image_latents, dim=0) |
|
else: |
|
image_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
if self.vae.config.force_upcast: |
|
self.vae.to(dtype) |
|
|
|
image_latents = image_latents.to(dtype) |
|
image_latents = self.vae.config.scaling_factor * image_latents |
|
|
|
return image_latents |
|
|
|
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
|
|
passed_add_embed_dim = ( |
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim |
|
) |
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features |
|
|
|
if expected_add_embed_dim != passed_add_embed_dim: |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
) |
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) |
|
return add_time_ids |
|
|
|
def upcast_vae(self): |
|
dtype = self.vae.dtype |
|
self.vae.to(dtype=torch.float32) |
|
use_torch_2_0_or_xformers = isinstance( |
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
( |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
LoRAXFormersAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
FusedAttnProcessor2_0, |
|
), |
|
) |
|
|
|
|
|
if use_torch_2_0_or_xformers: |
|
self.vae.post_quant_conv.to(dtype) |
|
self.vae.decoder.conv_in.to(dtype) |
|
self.vae.decoder.mid_block.to(dtype) |
|
|
|
|
|
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): |
|
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. |
|
|
|
The suffixes after the scaling factors represent the stages where they are being applied. |
|
|
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values |
|
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. |
|
|
|
Args: |
|
s1 (`float`): |
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
s2 (`float`): |
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
if not hasattr(self, "unet"): |
|
raise ValueError("The pipeline must have `unet` for using FreeU.") |
|
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) |
|
|
|
|
|
def disable_freeu(self): |
|
"""Disables the FreeU mechanism if enabled.""" |
|
self.unet.disable_freeu() |
|
|
|
def _enable_shared_attention_processors( |
|
self, |
|
share_attention: bool, |
|
adain_queries: bool, |
|
adain_keys: bool, |
|
adain_values: bool, |
|
full_attention_share: bool, |
|
shared_score_scale: float, |
|
shared_score_shift: float, |
|
only_self_level: float, |
|
): |
|
r"""Helper method to enable usage of Shared Attention Processor.""" |
|
attn_procs = {} |
|
num_self_layers = len([name for name in self.unet.attn_processors.keys() if "attn1" in name]) |
|
|
|
only_self_vec = get_switch_vec(num_self_layers, only_self_level) |
|
|
|
for i, name in enumerate(self.unet.attn_processors.keys()): |
|
is_self_attention = "attn1" in name |
|
if is_self_attention: |
|
if only_self_vec[i // 2]: |
|
attn_procs[name] = AttnProcessor2_0() |
|
else: |
|
attn_procs[name] = SharedAttentionProcessor( |
|
share_attention=share_attention, |
|
adain_queries=adain_queries, |
|
adain_keys=adain_keys, |
|
adain_values=adain_values, |
|
full_attention_share=full_attention_share, |
|
shared_score_scale=shared_score_scale, |
|
shared_score_shift=shared_score_shift, |
|
) |
|
else: |
|
attn_procs[name] = AttnProcessor2_0() |
|
|
|
self.unet.set_attn_processor(attn_procs) |
|
|
|
def _disable_shared_attention_processors(self): |
|
r""" |
|
Helper method to disable usage of the Shared Attention Processor. All processors |
|
are reset to the default Attention Processor for pytorch versions above 2.0. |
|
""" |
|
attn_procs = {} |
|
|
|
for i, name in enumerate(self.unet.attn_processors.keys()): |
|
attn_procs[name] = AttnProcessor2_0() |
|
|
|
self.unet.set_attn_processor(attn_procs) |
|
|
|
def _register_shared_norm(self, share_group_norm: bool = True, share_layer_norm: bool = True): |
|
r"""Helper method to register shared group/layer normalization layers.""" |
|
|
|
def register_norm_forward(norm_layer: Union[nn.GroupNorm, nn.LayerNorm]) -> Union[nn.GroupNorm, nn.LayerNorm]: |
|
if not hasattr(norm_layer, "orig_forward"): |
|
setattr(norm_layer, "orig_forward", norm_layer.forward) |
|
orig_forward = norm_layer.orig_forward |
|
|
|
def forward_(hidden_states: torch.Tensor) -> torch.Tensor: |
|
n = hidden_states.shape[-2] |
|
hidden_states = concat_first(hidden_states, dim=-2) |
|
hidden_states = orig_forward(hidden_states) |
|
return hidden_states[..., :n, :] |
|
|
|
norm_layer.forward = forward_ |
|
return norm_layer |
|
|
|
def get_norm_layers(pipeline_, norm_layers_: Dict[str, List[Union[nn.GroupNorm, nn.LayerNorm]]]): |
|
if isinstance(pipeline_, nn.LayerNorm) and share_layer_norm: |
|
norm_layers_["layer"].append(pipeline_) |
|
if isinstance(pipeline_, nn.GroupNorm) and share_group_norm: |
|
norm_layers_["group"].append(pipeline_) |
|
else: |
|
for layer in pipeline_.children(): |
|
get_norm_layers(layer, norm_layers_) |
|
|
|
norm_layers = {"group": [], "layer": []} |
|
get_norm_layers(self.unet, norm_layers) |
|
|
|
norm_layers_list = [] |
|
for key in ["group", "layer"]: |
|
for layer in norm_layers[key]: |
|
norm_layers_list.append(register_norm_forward(layer)) |
|
|
|
return norm_layers_list |
|
|
|
@property |
|
def style_aligned_enabled(self): |
|
r"""Returns whether StyleAligned has been enabled in the pipeline or not.""" |
|
return hasattr(self, "_style_aligned_norm_layers") and self._style_aligned_norm_layers is not None |
|
|
|
def enable_style_aligned( |
|
self, |
|
share_group_norm: bool = True, |
|
share_layer_norm: bool = True, |
|
share_attention: bool = True, |
|
adain_queries: bool = True, |
|
adain_keys: bool = True, |
|
adain_values: bool = False, |
|
full_attention_share: bool = False, |
|
shared_score_scale: float = 1.0, |
|
shared_score_shift: float = 0.0, |
|
only_self_level: float = 0.0, |
|
): |
|
r""" |
|
Enables the StyleAligned mechanism as in https://arxiv.org/abs/2312.02133. |
|
|
|
Args: |
|
share_group_norm (`bool`, defaults to `True`): |
|
Whether or not to use shared group normalization layers. |
|
share_layer_norm (`bool`, defaults to `True`): |
|
Whether or not to use shared layer normalization layers. |
|
share_attention (`bool`, defaults to `True`): |
|
Whether or not to use attention sharing between batch images. |
|
adain_queries (`bool`, defaults to `True`): |
|
Whether or not to apply the AdaIn operation on attention queries. |
|
adain_keys (`bool`, defaults to `True`): |
|
Whether or not to apply the AdaIn operation on attention keys. |
|
adain_values (`bool`, defaults to `False`): |
|
Whether or not to apply the AdaIn operation on attention values. |
|
full_attention_share (`bool`, defaults to `False`): |
|
Whether or not to use full attention sharing between all images in a batch. Can |
|
lead to content leakage within each batch and some loss in diversity. |
|
shared_score_scale (`float`, defaults to `1.0`): |
|
Scale for shared attention. |
|
""" |
|
self._style_aligned_norm_layers = self._register_shared_norm(share_group_norm, share_layer_norm) |
|
self._enable_shared_attention_processors( |
|
share_attention=share_attention, |
|
adain_queries=adain_queries, |
|
adain_keys=adain_keys, |
|
adain_values=adain_values, |
|
full_attention_share=full_attention_share, |
|
shared_score_scale=shared_score_scale, |
|
shared_score_shift=shared_score_shift, |
|
only_self_level=only_self_level, |
|
) |
|
|
|
def disable_style_aligned(self): |
|
r"""Disables the StyleAligned mechanism if it had been previously enabled.""" |
|
if self.style_aligned_enabled: |
|
for layer in self._style_aligned_norm_layers: |
|
layer.forward = layer.orig_forward |
|
|
|
self._style_aligned_norm_layers = None |
|
self._disable_shared_attention_processors() |
|
|
|
def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, |
|
key, value) are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
Args: |
|
unet (`bool`, defaults to `True`): To apply fusion on the UNet. |
|
vae (`bool`, defaults to `True`): To apply fusion on the VAE. |
|
""" |
|
self.fusing_unet = False |
|
self.fusing_vae = False |
|
|
|
if unet: |
|
self.fusing_unet = True |
|
self.unet.fuse_qkv_projections() |
|
self.unet.set_attn_processor(FusedAttnProcessor2_0()) |
|
|
|
if vae: |
|
if not isinstance(self.vae, AutoencoderKL): |
|
raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") |
|
|
|
self.fusing_vae = True |
|
self.vae.fuse_qkv_projections() |
|
self.vae.set_attn_processor(FusedAttnProcessor2_0()) |
|
|
|
def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): |
|
"""Disable QKV projection fusion if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
Args: |
|
unet (`bool`, defaults to `True`): To apply fusion on the UNet. |
|
vae (`bool`, defaults to `True`): To apply fusion on the VAE. |
|
|
|
""" |
|
if unet: |
|
if not self.fusing_unet: |
|
logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") |
|
else: |
|
self.unet.unfuse_qkv_projections() |
|
self.fusing_unet = False |
|
|
|
if vae: |
|
if not self.fusing_vae: |
|
logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") |
|
else: |
|
self.vae.unfuse_qkv_projections() |
|
self.fusing_vae = False |
|
|
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
timesteps (`torch.Tensor`): |
|
generate embedding vectors at these timesteps |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
dimension of the embeddings to generate |
|
dtype: |
|
data type of the generated embeddings |
|
|
|
Returns: |
|
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def guidance_rescale(self): |
|
return self._guidance_rescale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def denoising_end(self): |
|
return self._denoising_end |
|
|
|
@property |
|
def denoising_start(self): |
|
return self._denoising_start |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
image: Optional[PipelineImageInput] = None, |
|
mask_image: Optional[PipelineImageInput] = None, |
|
masked_image_latents: Optional[torch.FloatTensor] = None, |
|
strength: float = 0.3, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
denoising_start: Optional[float] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
denoising_end (`float`, *optional*): |
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will |
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the |
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a |
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image |
|
Output**](https://huggingface.co./docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): |
|
Optional image input to work with IP Adapters. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952). |
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a target image resolution. It should be as same |
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
self.check_inputs( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
height=height, |
|
width=width, |
|
callback_steps=callback_steps, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._denoising_end = denoising_end |
|
self._denoising_start = denoising_start |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
if image is not None: |
|
image = self.image_processor.preprocess(image, height=height, width=width) |
|
image = image.to(device=self.device, dtype=prompt_embeds.dtype) |
|
|
|
if mask_image is not None: |
|
mask = self.mask_processor.preprocess(mask_image, height=height, width=width) |
|
mask = mask.to(device=self.device, dtype=prompt_embeds.dtype) |
|
|
|
if masked_image_latents is not None: |
|
masked_image = masked_image_latents |
|
elif image.shape[1] == 4: |
|
|
|
masked_image = None |
|
else: |
|
masked_image = image * (mask < 0.5) |
|
else: |
|
mask = None |
|
|
|
|
|
def denoising_value_valid(dnv): |
|
return isinstance(self.denoising_end, float) and 0 < dnv < 1 |
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
|
|
if image is not None: |
|
timesteps, num_inference_steps = self.get_timesteps( |
|
num_inference_steps, |
|
strength, |
|
device, |
|
denoising_start=self.denoising_start if denoising_value_valid else None, |
|
) |
|
|
|
|
|
if num_inference_steps < 1: |
|
raise ValueError( |
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" |
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." |
|
) |
|
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
is_strength_max = strength == 1.0 |
|
add_noise = True if self.denoising_start is None else False |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
num_channels_unet = self.unet.config.in_channels |
|
return_image_latents = num_channels_unet == 4 |
|
|
|
latents = self.prepare_latents( |
|
image=image, |
|
mask=mask, |
|
width=width, |
|
height=height, |
|
num_channels_latents=num_channels_latents, |
|
timestep=latent_timestep, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
generator=generator, |
|
add_noise=add_noise, |
|
latents=latents, |
|
is_strength_max=is_strength_max, |
|
return_noise=True, |
|
return_image_latents=return_image_latents, |
|
) |
|
|
|
if mask is not None: |
|
if return_image_latents: |
|
latents, noise, image_latents = latents |
|
else: |
|
latents, noise = latents |
|
|
|
mask, masked_image_latents = self.prepare_mask_latents( |
|
mask=mask, |
|
masked_image=masked_image, |
|
batch_size=batch_size * num_images_per_prompt, |
|
height=height, |
|
width=width, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
generator=generator, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
if num_channels_unet == 9: |
|
|
|
num_channels_mask = mask.shape[1] |
|
num_channels_masked_image = masked_image_latents.shape[1] |
|
if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" |
|
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" |
|
" `pipeline.unet` or your `mask_image` or `image` input." |
|
) |
|
elif num_channels_unet != 4: |
|
raise ValueError( |
|
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
height, width = latents.shape[-2:] |
|
height = height * self.vae_scale_factor |
|
width = width * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
add_time_ids = self._get_add_time_ids( |
|
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype |
|
) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
if ip_adapter_image is not None: |
|
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True |
|
image_embeds, negative_image_embeds = self.encode_image( |
|
ip_adapter_image, device, num_images_per_prompt, output_hidden_state |
|
) |
|
if self.do_classifier_free_guidance: |
|
image_embeds = torch.cat([negative_image_embeds, image_embeds]) |
|
image_embeds = image_embeds.to(device) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
|
|
if ( |
|
self.denoising_end is not None |
|
and isinstance(self.denoising_end, float) |
|
and self.denoising_end > 0 |
|
and self.denoising_end < 1 |
|
): |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (self.denoising_end * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
self._num_timesteps = len(timesteps) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
if ip_adapter_image is not None: |
|
added_cond_kwargs["image_embeds"] = image_embeds |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if mask is not None and num_channels_unet == 4: |
|
init_latents_proper = image_latents |
|
|
|
if self.do_classifier_free_guidance: |
|
init_mask, _ = mask.chunk(2) |
|
else: |
|
init_mask = mask |
|
|
|
if i < len(timesteps) - 1: |
|
noise_timestep = timesteps[i + 1] |
|
init_latents_proper = self.scheduler.add_noise( |
|
init_latents_proper, noise, torch.tensor([noise_timestep]) |
|
) |
|
|
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) |
|
negative_pooled_prompt_embeds = callback_outputs.pop( |
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds |
|
) |
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|