|
import inspect |
|
import re |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import DiffusionPipeline |
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
PIL_INTERPOLATION, |
|
deprecate, |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
logging, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
re_attention = re.compile( |
|
r""" |
|
\\\(| |
|
\\\)| |
|
\\\[| |
|
\\]| |
|
\\\\| |
|
\\| |
|
\(| |
|
\[| |
|
:([+-]?[.\d]+)\)| |
|
\)| |
|
]| |
|
[^\\()\[\]:]+| |
|
: |
|
""", |
|
re.X, |
|
) |
|
|
|
|
|
def parse_prompt_attention(text): |
|
""" |
|
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. |
|
Accepted tokens are: |
|
(abc) - increases attention to abc by a multiplier of 1.1 |
|
(abc:3.12) - increases attention to abc by a multiplier of 3.12 |
|
[abc] - decreases attention to abc by a multiplier of 1.1 |
|
\\( - literal character '(' |
|
\\[ - literal character '[' |
|
\\) - literal character ')' |
|
\\] - literal character ']' |
|
\\ - literal character '\' |
|
anything else - just text |
|
>>> parse_prompt_attention('normal text') |
|
[['normal text', 1.0]] |
|
>>> parse_prompt_attention('an (important) word') |
|
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] |
|
>>> parse_prompt_attention('(unbalanced') |
|
[['unbalanced', 1.1]] |
|
>>> parse_prompt_attention('\\(literal\\]') |
|
[['(literal]', 1.0]] |
|
>>> parse_prompt_attention('(unnecessary)(parens)') |
|
[['unnecessaryparens', 1.1]] |
|
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') |
|
[['a ', 1.0], |
|
['house', 1.5730000000000004], |
|
[' ', 1.1], |
|
['on', 1.0], |
|
[' a ', 1.1], |
|
['hill', 0.55], |
|
[', sun, ', 1.1], |
|
['sky', 1.4641000000000006], |
|
['.', 1.1]] |
|
""" |
|
|
|
res = [] |
|
round_brackets = [] |
|
square_brackets = [] |
|
|
|
round_bracket_multiplier = 1.1 |
|
square_bracket_multiplier = 1 / 1.1 |
|
|
|
def multiply_range(start_position, multiplier): |
|
for p in range(start_position, len(res)): |
|
res[p][1] *= multiplier |
|
|
|
for m in re_attention.finditer(text): |
|
text = m.group(0) |
|
weight = m.group(1) |
|
|
|
if text.startswith("\\"): |
|
res.append([text[1:], 1.0]) |
|
elif text == "(": |
|
round_brackets.append(len(res)) |
|
elif text == "[": |
|
square_brackets.append(len(res)) |
|
elif weight is not None and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), float(weight)) |
|
elif text == ")" and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), round_bracket_multiplier) |
|
elif text == "]" and len(square_brackets) > 0: |
|
multiply_range(square_brackets.pop(), square_bracket_multiplier) |
|
else: |
|
res.append([text, 1.0]) |
|
|
|
for pos in round_brackets: |
|
multiply_range(pos, round_bracket_multiplier) |
|
|
|
for pos in square_brackets: |
|
multiply_range(pos, square_bracket_multiplier) |
|
|
|
if len(res) == 0: |
|
res = [["", 1.0]] |
|
|
|
|
|
i = 0 |
|
while i + 1 < len(res): |
|
if res[i][1] == res[i + 1][1]: |
|
res[i][0] += res[i + 1][0] |
|
res.pop(i + 1) |
|
else: |
|
i += 1 |
|
|
|
return res |
|
|
|
|
|
def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int): |
|
r""" |
|
Tokenize a list of prompts and return its tokens with weights of each token. |
|
|
|
No padding, starting or ending token is included. |
|
""" |
|
tokens = [] |
|
weights = [] |
|
truncated = False |
|
for text in prompt: |
|
texts_and_weights = parse_prompt_attention(text) |
|
text_token = [] |
|
text_weight = [] |
|
for word, weight in texts_and_weights: |
|
|
|
token = pipe.tokenizer(word).input_ids[1:-1] |
|
text_token += token |
|
|
|
text_weight += [weight] * len(token) |
|
|
|
if len(text_token) > max_length: |
|
truncated = True |
|
break |
|
|
|
if len(text_token) > max_length: |
|
truncated = True |
|
text_token = text_token[:max_length] |
|
text_weight = text_weight[:max_length] |
|
tokens.append(text_token) |
|
weights.append(text_weight) |
|
if truncated: |
|
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples") |
|
return tokens, weights |
|
|
|
|
|
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77): |
|
r""" |
|
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. |
|
""" |
|
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) |
|
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length |
|
for i in range(len(tokens)): |
|
tokens[i] = [bos] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos] |
|
if no_boseos_middle: |
|
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i])) |
|
else: |
|
w = [] |
|
if len(weights[i]) == 0: |
|
w = [1.0] * weights_length |
|
else: |
|
for j in range(max_embeddings_multiples): |
|
w.append(1.0) |
|
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))] |
|
w.append(1.0) |
|
w += [1.0] * (weights_length - len(w)) |
|
weights[i] = w[:] |
|
|
|
return tokens, weights |
|
|
|
|
|
def get_unweighted_text_embeddings( |
|
pipe: DiffusionPipeline, |
|
text_input: torch.Tensor, |
|
chunk_length: int, |
|
no_boseos_middle: Optional[bool] = True, |
|
): |
|
""" |
|
When the length of tokens is a multiple of the capacity of the text encoder, |
|
it should be split into chunks and sent to the text encoder individually. |
|
""" |
|
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) |
|
if max_embeddings_multiples > 1: |
|
text_embeddings = [] |
|
for i in range(max_embeddings_multiples): |
|
|
|
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone() |
|
|
|
|
|
text_input_chunk[:, 0] = text_input[0, 0] |
|
text_input_chunk[:, -1] = text_input[0, -1] |
|
text_embedding = pipe.text_encoder(text_input_chunk)[0] |
|
|
|
if no_boseos_middle: |
|
if i == 0: |
|
|
|
text_embedding = text_embedding[:, :-1] |
|
elif i == max_embeddings_multiples - 1: |
|
|
|
text_embedding = text_embedding[:, 1:] |
|
else: |
|
|
|
text_embedding = text_embedding[:, 1:-1] |
|
|
|
text_embeddings.append(text_embedding) |
|
text_embeddings = torch.concat(text_embeddings, axis=1) |
|
else: |
|
text_embeddings = pipe.text_encoder(text_input)[0] |
|
return text_embeddings |
|
|
|
|
|
def get_weighted_text_embeddings( |
|
pipe: DiffusionPipeline, |
|
prompt: Union[str, List[str]], |
|
uncond_prompt: Optional[Union[str, List[str]]] = None, |
|
max_embeddings_multiples: Optional[int] = 3, |
|
no_boseos_middle: Optional[bool] = False, |
|
skip_parsing: Optional[bool] = False, |
|
skip_weighting: Optional[bool] = False, |
|
): |
|
r""" |
|
Prompts can be assigned with local weights using brackets. For example, |
|
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', |
|
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. |
|
|
|
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. |
|
|
|
Args: |
|
pipe (`DiffusionPipeline`): |
|
Pipe to provide access to the tokenizer and the text encoder. |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
uncond_prompt (`str` or `List[str]`): |
|
The unconditional prompt or prompts for guide the image generation. If unconditional prompt |
|
is provided, the embeddings of prompt and uncond_prompt are concatenated. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
no_boseos_middle (`bool`, *optional*, defaults to `False`): |
|
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and |
|
ending token in each of the chunk in the middle. |
|
skip_parsing (`bool`, *optional*, defaults to `False`): |
|
Skip the parsing of brackets. |
|
skip_weighting (`bool`, *optional*, defaults to `False`): |
|
Skip the weighting. When the parsing is skipped, it is forced True. |
|
""" |
|
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 |
|
if isinstance(prompt, str): |
|
prompt = [prompt] |
|
|
|
if not skip_parsing: |
|
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2) |
|
if uncond_prompt is not None: |
|
if isinstance(uncond_prompt, str): |
|
uncond_prompt = [uncond_prompt] |
|
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2) |
|
else: |
|
prompt_tokens = [ |
|
token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids |
|
] |
|
prompt_weights = [[1.0] * len(token) for token in prompt_tokens] |
|
if uncond_prompt is not None: |
|
if isinstance(uncond_prompt, str): |
|
uncond_prompt = [uncond_prompt] |
|
uncond_tokens = [ |
|
token[1:-1] |
|
for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids |
|
] |
|
uncond_weights = [[1.0] * len(token) for token in uncond_tokens] |
|
|
|
|
|
max_length = max([len(token) for token in prompt_tokens]) |
|
if uncond_prompt is not None: |
|
max_length = max(max_length, max([len(token) for token in uncond_tokens])) |
|
|
|
max_embeddings_multiples = min( |
|
max_embeddings_multiples, |
|
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, |
|
) |
|
max_embeddings_multiples = max(1, max_embeddings_multiples) |
|
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 |
|
|
|
|
|
bos = pipe.tokenizer.bos_token_id |
|
eos = pipe.tokenizer.eos_token_id |
|
pad = getattr(pipe.tokenizer, "pad_token_id", eos) |
|
prompt_tokens, prompt_weights = pad_tokens_and_weights( |
|
prompt_tokens, |
|
prompt_weights, |
|
max_length, |
|
bos, |
|
eos, |
|
pad, |
|
no_boseos_middle=no_boseos_middle, |
|
chunk_length=pipe.tokenizer.model_max_length, |
|
) |
|
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device) |
|
if uncond_prompt is not None: |
|
uncond_tokens, uncond_weights = pad_tokens_and_weights( |
|
uncond_tokens, |
|
uncond_weights, |
|
max_length, |
|
bos, |
|
eos, |
|
pad, |
|
no_boseos_middle=no_boseos_middle, |
|
chunk_length=pipe.tokenizer.model_max_length, |
|
) |
|
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device) |
|
|
|
|
|
text_embeddings = get_unweighted_text_embeddings( |
|
pipe, |
|
prompt_tokens, |
|
pipe.tokenizer.model_max_length, |
|
no_boseos_middle=no_boseos_middle, |
|
) |
|
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=text_embeddings.device) |
|
if uncond_prompt is not None: |
|
uncond_embeddings = get_unweighted_text_embeddings( |
|
pipe, |
|
uncond_tokens, |
|
pipe.tokenizer.model_max_length, |
|
no_boseos_middle=no_boseos_middle, |
|
) |
|
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=uncond_embeddings.device) |
|
|
|
|
|
|
|
if (not skip_parsing) and (not skip_weighting): |
|
previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype) |
|
text_embeddings *= prompt_weights.unsqueeze(-1) |
|
current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype) |
|
text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1) |
|
if uncond_prompt is not None: |
|
previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype) |
|
uncond_embeddings *= uncond_weights.unsqueeze(-1) |
|
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype) |
|
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1) |
|
|
|
if uncond_prompt is not None: |
|
return text_embeddings, uncond_embeddings |
|
return text_embeddings, None |
|
|
|
|
|
def preprocess_image(image, batch_size): |
|
w, h = image.size |
|
w, h = (x - x % 8 for x in (w, h)) |
|
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size) |
|
image = torch.from_numpy(image) |
|
return 2.0 * image - 1.0 |
|
|
|
|
|
def preprocess_mask(mask, batch_size, scale_factor=8): |
|
if not isinstance(mask, torch.FloatTensor): |
|
mask = mask.convert("L") |
|
w, h = mask.size |
|
w, h = (x - x % 8 for x in (w, h)) |
|
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"]) |
|
mask = np.array(mask).astype(np.float32) / 255.0 |
|
mask = np.tile(mask, (4, 1, 1)) |
|
mask = np.vstack([mask[None]] * batch_size) |
|
mask = 1 - mask |
|
mask = torch.from_numpy(mask) |
|
return mask |
|
|
|
else: |
|
valid_mask_channel_sizes = [1, 3] |
|
|
|
if mask.shape[3] in valid_mask_channel_sizes: |
|
mask = mask.permute(0, 3, 1, 2) |
|
elif mask.shape[1] not in valid_mask_channel_sizes: |
|
raise ValueError( |
|
f"Mask channel dimension of size in {valid_mask_channel_sizes} should be second or fourth dimension," |
|
f" but received mask of shape {tuple(mask.shape)}" |
|
) |
|
|
|
mask = mask.mean(dim=1, keepdim=True) |
|
h, w = mask.shape[-2:] |
|
h, w = (x - x % 8 for x in (h, w)) |
|
mask = torch.nn.functional.interpolate(mask, (h // scale_factor, w // scale_factor)) |
|
return mask |
|
|
|
|
|
class StableDiffusionLongPromptWeightingPipeline( |
|
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin |
|
): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing |
|
weighting in prompt. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co./CompVis/stable-diffusion-v1-4) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." |
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" |
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" |
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" |
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["clip_sample"] = False |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse("0.9.0.dev0") |
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.register_to_config( |
|
requires_safety_checker=requires_safety_checker, |
|
) |
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several |
|
steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in |
|
several steps. This is useful to save a large amount of memory and to allow the processing of larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a |
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
|
Note that offloading happens on a submodule basis. Memory savings are higher than with |
|
`enable_model_cpu_offload`, but performance is lower. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
if self.safety_checker is not None: |
|
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) |
|
|
|
|
|
def enable_model_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate import cpu_offload_with_hook |
|
else: |
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
hook = None |
|
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: |
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) |
|
|
|
if self.safety_checker is not None: |
|
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) |
|
|
|
|
|
self.final_offload_hook = hook |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
max_embeddings_multiples=3, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `list(int)`): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
""" |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if negative_prompt_embeds is None: |
|
if negative_prompt is None: |
|
negative_prompt = [""] * batch_size |
|
elif isinstance(negative_prompt, str): |
|
negative_prompt = [negative_prompt] * batch_size |
|
if batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
if prompt_embeds is None or negative_prompt_embeds is None: |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, self.tokenizer) |
|
|
|
prompt_embeds1, negative_prompt_embeds1 = get_weighted_text_embeddings( |
|
pipe=self, |
|
prompt=prompt, |
|
uncond_prompt=negative_prompt if do_classifier_free_guidance else None, |
|
max_embeddings_multiples=max_embeddings_multiples, |
|
) |
|
if prompt_embeds is None: |
|
prompt_embeds = prompt_embeds1 |
|
if negative_prompt_embeds is None: |
|
negative_prompt_embeds = negative_prompt_embeds1 |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
bs_embed, seq_len, _ = negative_prompt_embeds.shape |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
strength, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if strength < 0 or strength > 1: |
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
def get_timesteps(self, num_inference_steps, strength, device, is_text2img): |
|
if is_text2img: |
|
return self.scheduler.timesteps.to(device), num_inference_steps |
|
else: |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
else: |
|
has_nsfw_concept = None |
|
return image, has_nsfw_concept |
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def prepare_latents( |
|
self, |
|
image, |
|
timestep, |
|
num_images_per_prompt, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
if image is None: |
|
batch_size = batch_size * num_images_per_prompt |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents, None, None |
|
else: |
|
image = image.to(device=self.device, dtype=dtype) |
|
init_latent_dist = self.vae.encode(image).latent_dist |
|
init_latents = init_latent_dist.sample(generator=generator) |
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
|
|
init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0) |
|
init_latents_orig = init_latents |
|
|
|
|
|
noise = randn_tensor(init_latents.shape, generator=generator, device=self.device, dtype=dtype) |
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
latents = init_latents |
|
return latents, init_latents_orig, noise |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
strength: float = 0.8, |
|
num_images_per_prompt: Optional[int] = 1, |
|
add_predicted_noise: Optional[bool] = False, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
max_embeddings_multiples: Optional[int] = 3, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
is_cancelled_callback: Optional[Callable[[], bool]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
image (`torch.FloatTensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. |
|
mask_image (`torch.FloatTensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be |
|
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a |
|
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should |
|
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. |
|
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The |
|
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added |
|
noise will be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
add_predicted_noise (`bool`, *optional*, defaults to True): |
|
Use predicted noise instead of random noise when constructing noisy versions of the original image in |
|
the reverse diffusion process |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
is_cancelled_callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. If the function returns |
|
`True`, the inference will be cancelled. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
|
Returns: |
|
`None` if cancelled by `is_cancelled_callback`, |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, height, width, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
max_embeddings_multiples, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
dtype = prompt_embeds.dtype |
|
|
|
|
|
if isinstance(image, PIL.Image.Image): |
|
image = preprocess_image(image, batch_size) |
|
if image is not None: |
|
image = image.to(device=self.device, dtype=dtype) |
|
if isinstance(mask_image, PIL.Image.Image): |
|
mask_image = preprocess_mask(mask_image, batch_size, self.vae_scale_factor) |
|
if mask_image is not None: |
|
mask = mask_image.to(device=self.device, dtype=dtype) |
|
mask = torch.cat([mask] * num_images_per_prompt) |
|
else: |
|
mask = None |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device, image is None) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
|
|
latents, init_latents_orig, noise = self.prepare_latents( |
|
image, |
|
latent_timestep, |
|
num_images_per_prompt, |
|
batch_size, |
|
self.unet.config.in_channels, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
if mask is not None: |
|
|
|
if add_predicted_noise: |
|
init_latents_proper = self.scheduler.add_noise( |
|
init_latents_orig, noise_pred_uncond, torch.tensor([t]) |
|
) |
|
else: |
|
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) |
|
latents = (init_latents_proper * mask) + (latents * (1 - mask)) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if i % callback_steps == 0: |
|
if callback is not None: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
if is_cancelled_callback is not None and is_cancelled_callback(): |
|
return None |
|
|
|
if output_type == "latent": |
|
image = latents |
|
has_nsfw_concept = None |
|
elif output_type == "pil": |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
|
|
|
|
image = self.numpy_to_pil(image) |
|
else: |
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return image, has_nsfw_concept |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
def text2img( |
|
self, |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
max_embeddings_multiples: Optional[int] = 3, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
is_cancelled_callback: Optional[Callable[[], bool]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
r""" |
|
Function for text-to-image generation. |
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
is_cancelled_callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. If the function returns |
|
`True`, the inference will be cancelled. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
|
Returns: |
|
`None` if cancelled by `is_cancelled_callback`, |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
return self.__call__( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
max_embeddings_multiples=max_embeddings_multiples, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
is_cancelled_callback=is_cancelled_callback, |
|
callback_steps=callback_steps, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
|
|
def img2img( |
|
self, |
|
image: Union[torch.FloatTensor, PIL.Image.Image], |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
max_embeddings_multiples: Optional[int] = 3, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
is_cancelled_callback: Optional[Callable[[], bool]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
r""" |
|
Function for image-to-image generation. |
|
Args: |
|
image (`torch.FloatTensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. |
|
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The |
|
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added |
|
noise will be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. This parameter will be modulated by `strength`. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
is_cancelled_callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. If the function returns |
|
`True`, the inference will be cancelled. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
|
Returns: |
|
`None` if cancelled by `is_cancelled_callback`, |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
return self.__call__( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
strength=strength, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
max_embeddings_multiples=max_embeddings_multiples, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
is_cancelled_callback=is_cancelled_callback, |
|
callback_steps=callback_steps, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
|
|
def inpaint( |
|
self, |
|
image: Union[torch.FloatTensor, PIL.Image.Image], |
|
mask_image: Union[torch.FloatTensor, PIL.Image.Image], |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
add_predicted_noise: Optional[bool] = False, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
max_embeddings_multiples: Optional[int] = 3, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
is_cancelled_callback: Optional[Callable[[], bool]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
r""" |
|
Function for inpaint. |
|
Args: |
|
image (`torch.FloatTensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. This is the image whose masked region will be inpainted. |
|
mask_image (`torch.FloatTensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be |
|
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a |
|
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should |
|
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` |
|
is 1, the denoising process will be run on the masked area for the full number of iterations specified |
|
in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more |
|
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at |
|
the expense of slower inference. This parameter will be modulated by `strength`, as explained above. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
add_predicted_noise (`bool`, *optional*, defaults to True): |
|
Use predicted noise instead of random noise when constructing noisy versions of the original image in |
|
the reverse diffusion process |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
max_embeddings_multiples (`int`, *optional*, defaults to `3`): |
|
The max multiple length of prompt embeddings compared to the max output length of text encoder. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
is_cancelled_callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. If the function returns |
|
`True`, the inference will be cancelled. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
|
Returns: |
|
`None` if cancelled by `is_cancelled_callback`, |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
return self.__call__( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
mask_image=mask_image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
strength=strength, |
|
num_images_per_prompt=num_images_per_prompt, |
|
add_predicted_noise=add_predicted_noise, |
|
eta=eta, |
|
generator=generator, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
max_embeddings_multiples=max_embeddings_multiples, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
is_cancelled_callback=is_cancelled_callback, |
|
callback_steps=callback_steps, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
|