|
import inspect |
|
from typing import List, Optional, Union |
|
|
|
import PIL |
|
import torch |
|
from torch.nn import functional as F |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers import ( |
|
DiffusionPipeline, |
|
ImagePipelineOutput, |
|
UnCLIPScheduler, |
|
UNet2DConditionModel, |
|
UNet2DModel, |
|
) |
|
from diffusers.pipelines.unclip import UnCLIPTextProjModel |
|
from diffusers.utils import is_accelerate_available, logging, randn_tensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def slerp(val, low, high): |
|
""" |
|
Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic. |
|
""" |
|
low_norm = low / torch.norm(low) |
|
high_norm = high / torch.norm(high) |
|
omega = torch.acos((low_norm * high_norm)) |
|
so = torch.sin(omega) |
|
res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high |
|
return res |
|
|
|
|
|
class UnCLIPImageInterpolationPipeline(DiffusionPipeline): |
|
""" |
|
Pipeline to generate variations from an input image using unCLIP |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
text_encoder ([`CLIPTextModelWithProjection`]): |
|
Frozen text-encoder. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `image_encoder`. |
|
image_encoder ([`CLIPVisionModelWithProjection`]): |
|
Frozen CLIP image-encoder. unCLIP Image Variation uses the vision portion of |
|
[CLIP](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), |
|
specifically the [clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14) variant. |
|
text_proj ([`UnCLIPTextProjModel`]): |
|
Utility class to prepare and combine the embeddings before they are passed to the decoder. |
|
decoder ([`UNet2DConditionModel`]): |
|
The decoder to invert the image embedding into an image. |
|
super_res_first ([`UNet2DModel`]): |
|
Super resolution unet. Used in all but the last step of the super resolution diffusion process. |
|
super_res_last ([`UNet2DModel`]): |
|
Super resolution unet. Used in the last step of the super resolution diffusion process. |
|
decoder_scheduler ([`UnCLIPScheduler`]): |
|
Scheduler used in the decoder denoising process. Just a modified DDPMScheduler. |
|
super_res_scheduler ([`UnCLIPScheduler`]): |
|
Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler. |
|
|
|
""" |
|
|
|
decoder: UNet2DConditionModel |
|
text_proj: UnCLIPTextProjModel |
|
text_encoder: CLIPTextModelWithProjection |
|
tokenizer: CLIPTokenizer |
|
feature_extractor: CLIPImageProcessor |
|
image_encoder: CLIPVisionModelWithProjection |
|
super_res_first: UNet2DModel |
|
super_res_last: UNet2DModel |
|
|
|
decoder_scheduler: UnCLIPScheduler |
|
super_res_scheduler: UnCLIPScheduler |
|
|
|
|
|
def __init__( |
|
self, |
|
decoder: UNet2DConditionModel, |
|
text_encoder: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
text_proj: UnCLIPTextProjModel, |
|
feature_extractor: CLIPImageProcessor, |
|
image_encoder: CLIPVisionModelWithProjection, |
|
super_res_first: UNet2DModel, |
|
super_res_last: UNet2DModel, |
|
decoder_scheduler: UnCLIPScheduler, |
|
super_res_scheduler: UnCLIPScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
decoder=decoder, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
text_proj=text_proj, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
super_res_first=super_res_first, |
|
super_res_last=super_res_last, |
|
decoder_scheduler=decoder_scheduler, |
|
super_res_scheduler=super_res_scheduler, |
|
) |
|
|
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
text_mask = text_inputs.attention_mask.bool().to(device) |
|
text_encoder_output = self.text_encoder(text_input_ids.to(device)) |
|
|
|
prompt_embeds = text_encoder_output.text_embeds |
|
text_encoder_hidden_states = text_encoder_output.last_hidden_state |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens = [""] * batch_size |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_text_mask = uncond_input.attention_mask.bool().to(device) |
|
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds |
|
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state |
|
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) |
|
|
|
seq_len = uncond_text_encoder_hidden_states.shape[1] |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) |
|
|
|
text_mask = torch.cat([uncond_text_mask, text_mask]) |
|
|
|
return prompt_embeds, text_encoder_hidden_states, text_mask |
|
|
|
|
|
def _encode_image(self, image, device, num_images_per_prompt, image_embeddings: Optional[torch.Tensor] = None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if image_embeddings is None: |
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(images=image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_embeddings = self.image_encoder(image).image_embeds |
|
|
|
image_embeddings = image_embeddings.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
return image_embeddings |
|
|
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's |
|
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only |
|
when their specific submodule has its `forward` method called. |
|
""" |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
models = [ |
|
self.decoder, |
|
self.text_proj, |
|
self.text_encoder, |
|
self.super_res_first, |
|
self.super_res_last, |
|
] |
|
for cpu_offloaded_model in models: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"): |
|
return self.device |
|
for module in self.decoder.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image: Optional[Union[List[PIL.Image.Image], torch.FloatTensor]] = None, |
|
steps: int = 5, |
|
decoder_num_inference_steps: int = 25, |
|
super_res_num_inference_steps: int = 7, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
image_embeddings: Optional[torch.Tensor] = None, |
|
decoder_latents: Optional[torch.FloatTensor] = None, |
|
super_res_latents: Optional[torch.FloatTensor] = None, |
|
decoder_guidance_scale: float = 8.0, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
image (`List[PIL.Image.Image]` or `torch.FloatTensor`): |
|
The images to use for the image interpolation. Only accepts a list of two PIL Images or If you provide a tensor, it needs to comply with the |
|
configuration of |
|
[this](https://huggingface.co./fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json) |
|
`CLIPImageProcessor` while still having a shape of two in the 0th dimension. Can be left to `None` only when `image_embeddings` are passed. |
|
steps (`int`, *optional*, defaults to 5): |
|
The number of interpolation images to generate. |
|
decoder_num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality |
|
image at the expense of slower inference. |
|
super_res_num_inference_steps (`int`, *optional*, defaults to 7): |
|
The number of denoising steps for super resolution. More denoising steps usually lead to a higher |
|
quality image at the expense of slower inference. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
image_embeddings (`torch.Tensor`, *optional*): |
|
Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings |
|
can be passed for tasks like image interpolations. `image` can the be left to `None`. |
|
decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*): |
|
Pre-generated noisy latents to be used as inputs for the decoder. |
|
super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*): |
|
Pre-generated noisy latents to be used as inputs for the decoder. |
|
decoder_guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
""" |
|
|
|
batch_size = steps |
|
|
|
device = self._execution_device |
|
|
|
if isinstance(image, List): |
|
if len(image) != 2: |
|
raise AssertionError( |
|
f"Expected 'image' List to be of size 2, but passed 'image' length is {len(image)}" |
|
) |
|
elif not (isinstance(image[0], PIL.Image.Image) and isinstance(image[0], PIL.Image.Image)): |
|
raise AssertionError( |
|
f"Expected 'image' List to contain PIL.Image.Image, but passed 'image' contents are {type(image[0])} and {type(image[1])}" |
|
) |
|
elif isinstance(image, torch.FloatTensor): |
|
if image.shape[0] != 2: |
|
raise AssertionError( |
|
f"Expected 'image' to be torch.FloatTensor of shape 2 in 0th dimension, but passed 'image' size is {image.shape[0]}" |
|
) |
|
elif isinstance(image_embeddings, torch.Tensor): |
|
if image_embeddings.shape[0] != 2: |
|
raise AssertionError( |
|
f"Expected 'image_embeddings' to be torch.FloatTensor of shape 2 in 0th dimension, but passed 'image_embeddings' shape is {image_embeddings.shape[0]}" |
|
) |
|
else: |
|
raise AssertionError( |
|
f"Expected 'image' or 'image_embeddings' to be not None with types List[PIL.Image] or Torch.FloatTensor respectively. Received {type(image)} and {type(image_embeddings)} repsectively" |
|
) |
|
|
|
original_image_embeddings = self._encode_image( |
|
image=image, device=device, num_images_per_prompt=1, image_embeddings=image_embeddings |
|
) |
|
|
|
image_embeddings = [] |
|
|
|
for interp_step in torch.linspace(0, 1, steps): |
|
temp_image_embeddings = slerp( |
|
interp_step, original_image_embeddings[0], original_image_embeddings[1] |
|
).unsqueeze(0) |
|
image_embeddings.append(temp_image_embeddings) |
|
|
|
image_embeddings = torch.cat(image_embeddings).to(device) |
|
|
|
do_classifier_free_guidance = decoder_guidance_scale > 1.0 |
|
|
|
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( |
|
prompt=["" for i in range(steps)], |
|
device=device, |
|
num_images_per_prompt=1, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
) |
|
|
|
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( |
|
image_embeddings=image_embeddings, |
|
prompt_embeds=prompt_embeds, |
|
text_encoder_hidden_states=text_encoder_hidden_states, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
) |
|
|
|
if device.type == "mps": |
|
|
|
|
|
text_mask = text_mask.type(torch.int) |
|
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) |
|
decoder_text_mask = decoder_text_mask.type(torch.bool) |
|
else: |
|
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) |
|
|
|
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) |
|
decoder_timesteps_tensor = self.decoder_scheduler.timesteps |
|
|
|
num_channels_latents = self.decoder.config.in_channels |
|
height = self.decoder.config.sample_size |
|
width = self.decoder.config.sample_size |
|
|
|
|
|
decoder_latents = self.prepare_latents( |
|
(1, num_channels_latents, height, width), |
|
text_encoder_hidden_states.dtype, |
|
device, |
|
generator, |
|
decoder_latents, |
|
self.decoder_scheduler, |
|
) |
|
decoder_latents = decoder_latents.repeat((batch_size, 1, 1, 1)) |
|
|
|
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents |
|
|
|
noise_pred = self.decoder( |
|
sample=latent_model_input, |
|
timestep=t, |
|
encoder_hidden_states=text_encoder_hidden_states, |
|
class_labels=additive_clip_time_embeddings, |
|
attention_mask=decoder_text_mask, |
|
).sample |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) |
|
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) |
|
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) |
|
|
|
if i + 1 == decoder_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = decoder_timesteps_tensor[i + 1] |
|
|
|
|
|
decoder_latents = self.decoder_scheduler.step( |
|
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator |
|
).prev_sample |
|
|
|
decoder_latents = decoder_latents.clamp(-1, 1) |
|
|
|
image_small = decoder_latents |
|
|
|
|
|
|
|
|
|
|
|
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) |
|
super_res_timesteps_tensor = self.super_res_scheduler.timesteps |
|
|
|
channels = self.super_res_first.config.in_channels // 2 |
|
height = self.super_res_first.config.sample_size |
|
width = self.super_res_first.config.sample_size |
|
|
|
super_res_latents = self.prepare_latents( |
|
(batch_size, channels, height, width), |
|
image_small.dtype, |
|
device, |
|
generator, |
|
super_res_latents, |
|
self.super_res_scheduler, |
|
) |
|
|
|
if device.type == "mps": |
|
|
|
image_upscaled = F.interpolate(image_small, size=[height, width]) |
|
else: |
|
interpolate_antialias = {} |
|
if "antialias" in inspect.signature(F.interpolate).parameters: |
|
interpolate_antialias["antialias"] = True |
|
|
|
image_upscaled = F.interpolate( |
|
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): |
|
|
|
|
|
if i == super_res_timesteps_tensor.shape[0] - 1: |
|
unet = self.super_res_last |
|
else: |
|
unet = self.super_res_first |
|
|
|
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) |
|
|
|
noise_pred = unet( |
|
sample=latent_model_input, |
|
timestep=t, |
|
).sample |
|
|
|
if i + 1 == super_res_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = super_res_timesteps_tensor[i + 1] |
|
|
|
|
|
super_res_latents = self.super_res_scheduler.step( |
|
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator |
|
).prev_sample |
|
|
|
image = super_res_latents |
|
|
|
|
|
|
|
|
|
image = image * 0.5 + 0.5 |
|
image = image.clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|