system HF staff commited on
Commit
85acda7
·
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - apache-2-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - question-answering
18
+ task_ids:
19
+ - closed-domain-qa
20
+ - extractive-qa
21
+ ---
22
+
23
+
24
+ # Dataset Card for COVID-QA
25
+
26
+ ## Table of Contents
27
+ - [Dataset Description](#dataset-description)
28
+ - [Dataset Summary](#dataset-summary)
29
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
30
+ - [Languages](#languages)
31
+ - [Dataset Structure](#dataset-structure)
32
+ - [Data Instances](#data-instances)
33
+ - [Data Fields](#data-instances)
34
+ - [Data Splits](#data-instances)
35
+ - [Dataset Creation](#dataset-creation)
36
+ - [Curation Rationale](#curation-rationale)
37
+ - [Source Data](#source-data)
38
+ - [Annotations](#annotations)
39
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
40
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
41
+ - [Social Impact of Dataset](#social-impact-of-dataset)
42
+ - [Discussion of Biases](#discussion-of-biases)
43
+ - [Other Known Limitations](#other-known-limitations)
44
+ - [Additional Information](#additional-information)
45
+ - [Dataset Curators](#dataset-curators)
46
+ - [Licensing Information](#licensing-information)
47
+ - [Citation Information](#citation-information)
48
+
49
+ ## Dataset Description
50
+
51
+ - **Repository:** https://github.com/deepset-ai/COVID-QA
52
+ - **Paper:** https://openreview.net/forum?id=JENSKEEzsoU
53
+ - **Point of Contact:** [deepset AI](https://github.com/deepset-ai)
54
+
55
+ ### Dataset Summary
56
+
57
+ COVID-QA is a Question Answering dataset consisting of 2,019 question/answer pairs annotated by volunteer biomedical experts on scientific articles related to COVID-19.
58
+ A total of 147 scientific articles from the CORD-19 dataset were annotated by 15 experts.
59
+
60
+ ### Supported Tasks and Leaderboards
61
+
62
+ [More Information Needed]
63
+
64
+ ### Languages
65
+
66
+ The text in the dataset is in English.
67
+
68
+ ## Dataset Structure
69
+
70
+ ### Data Instances
71
+
72
+ **What do the instances that comprise the dataset represent?**
73
+ Each represents a question, a context (document passage from the CORD19 dataset) and an answer.
74
+
75
+ **How many instances are there in total?**
76
+ 2019 instances
77
+
78
+ **What data does each instance consist of?**
79
+ Each instance is a question, a set of answers, and an id associated with each answer.
80
+
81
+ [More Information Needed]
82
+
83
+ ### Data Fields
84
+
85
+ The data was annotated in SQuAD style fashion, where each row contains:
86
+
87
+ * **question**: Query question
88
+ * **context**: Context text to obtain the answer from
89
+ * **document_id** The document ID of the context text
90
+ * **answer**: Dictionary containing the answer string and the start index
91
+
92
+ ### Data Splits
93
+
94
+ **data/COVID-QA.json**: 2,019 question/answer pairs annotated by volunteer biomedical experts on scientific articles related to COVID-19.
95
+
96
+ [More Information Needed]
97
+
98
+ ## Dataset Creation
99
+
100
+ ### Curation Rationale
101
+
102
+ [More Information Needed]
103
+
104
+ ### Source Data
105
+
106
+ #### Initial Data Collection and Normalization
107
+
108
+ The inital data collected comes from 147 scientific articles from the CORD-19 dataset. Question and answers were then
109
+ annotated afterwards.
110
+
111
+ #### Who are the source language producers?
112
+
113
+ [More Information Needed]
114
+
115
+ ### Annotations
116
+
117
+ #### Annotation process
118
+
119
+ While annotators were volunteers, they were required to have at least a Master’s degree in biomedical sciences.
120
+ The annotation team was led by a medical doctor (G.A.R.) who vetted the volunteer’s credentials and
121
+ manually verified each question/answer pair produced. We used an existing, web-based annotation tool that had been
122
+ created by deepset and is available at their Neural Search framework [haystack](https://github.com/deepset-ai/haystack).
123
+
124
+ #### Who are the annotators?
125
+
126
+ The annotators are 15 volunteer biomedical experts on scientific articles related to COVID-19.
127
+
128
+ ### Personal and Sensitive Information
129
+
130
+ [More Information Needed]
131
+
132
+ ## Considerations for Using the Data
133
+
134
+ ### Social Impact of Dataset
135
+
136
+ The dataset aims to help build question answering models serving clinical and scientific researchers, public health authorities, and frontline workers.
137
+ These QA systems can help them find answers and patterns in research papers by locating relevant answers to common questions from scientific articles.
138
+
139
+ ### Discussion of Biases
140
+
141
+ [More Information Needed]
142
+
143
+ ### Other Known Limitations
144
+
145
+ ## Additional Information
146
+
147
+ The listed authors in the homepage are maintaining/supporting the dataset.
148
+
149
+ ### Dataset Curators
150
+
151
+ [More Information Needed]
152
+
153
+ The Proto_qa dataset is licensed under
154
+ the [Apache License 2.0](https://github.com/deepset-ai/COVID-QA/blob/master/LICENSE)
155
+
156
+ [More Information Needed]
157
+
158
+ ### Citation Information
159
+
160
+ ```
161
+ @inproceedings{moller2020covid,
162
+ title={COVID-QA: A Question Answering Dataset for COVID-19},
163
+ author={M{\"o}ller, Timo and Reina, Anthony and Jayakumar, Raghavan and Pietsch, Malte},
164
+ booktitle={Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020},
165
+ year={2020}
166
+ }
167
+ ```
covid_qa_deepset.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """COVID-QA: A Question Answering Dataset for COVID-19."""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import json
20
+ import logging
21
+
22
+ import datasets
23
+
24
+
25
+ _CITATION = """\
26
+ @inproceedings{moller2020covid,
27
+ title={COVID-QA: A Question Answering Dataset for COVID-19},
28
+ author={M{\"o}ller, Timo and Reina, Anthony and Jayakumar, Raghavan and Pietsch, Malte},
29
+ booktitle={Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020},
30
+ year={2020}
31
+ }
32
+ """
33
+
34
+ # You can copy an official description
35
+ _DESCRIPTION = """\
36
+ COVID-QA is a Question Answering dataset consisting of 2,019 question/answer pairs annotated by volunteer biomedical \
37
+ experts on scientific articles related to COVID-19.
38
+ """
39
+
40
+ _HOMEPAGE = "https://github.com/deepset-ai/COVID-QA"
41
+
42
+ _LICENSE = "Apache License 2.0"
43
+
44
+ _URL = "https://raw.githubusercontent.com/deepset-ai/COVID-QA/master/data/question-answering/"
45
+ _URLs = {"covid_qa_deepset": _URL + "COVID-QA.json"}
46
+
47
+
48
+ class CovidQADeepset(datasets.GeneratorBasedBuilder):
49
+ VERSION = datasets.Version("1.0.0")
50
+
51
+ BUILDER_CONFIGS = [
52
+ datasets.BuilderConfig(name="covid_qa_deepset", version=VERSION, description="COVID-QA deepset"),
53
+ ]
54
+
55
+ def _info(self):
56
+ features = datasets.Features(
57
+ {
58
+ "document_id": datasets.Value("int32"),
59
+ "context": datasets.Value("string"),
60
+ "question": datasets.Value("string"),
61
+ "is_impossible": datasets.Value("bool"),
62
+ "id": datasets.Value("int32"),
63
+ "answers": datasets.features.Sequence(
64
+ {
65
+ "text": datasets.Value("string"),
66
+ "answer_start": datasets.Value("int32"),
67
+ }
68
+ ),
69
+ }
70
+ )
71
+ return datasets.DatasetInfo(
72
+ description=_DESCRIPTION,
73
+ features=features,
74
+ supervised_keys=None,
75
+ homepage=_HOMEPAGE,
76
+ license=_LICENSE,
77
+ citation=_CITATION,
78
+ )
79
+
80
+ def _split_generators(self, dl_manager):
81
+ url = _URLs[self.config.name]
82
+ downloaded_filepath = dl_manager.download_and_extract(url)
83
+
84
+ return [
85
+ datasets.SplitGenerator(
86
+ name=datasets.Split.TRAIN,
87
+ gen_kwargs={"filepath": downloaded_filepath},
88
+ ),
89
+ ]
90
+
91
+ def _generate_examples(self, filepath):
92
+ """This function returns the examples in the raw (text) form."""
93
+ logging.info("generating examples from = %s", filepath)
94
+ with open(filepath, encoding="utf-8") as f:
95
+ covid_qa = json.load(f)
96
+ for article in covid_qa["data"]:
97
+ for paragraph in article["paragraphs"]:
98
+ context = paragraph["context"].strip()
99
+ document_id = paragraph["document_id"]
100
+ for qa in paragraph["qas"]:
101
+ question = qa["question"].strip()
102
+ is_impossible = qa["is_impossible"]
103
+ id_ = qa["id"]
104
+
105
+ answer_starts = [answer["answer_start"] for answer in qa["answers"]]
106
+ answers = [answer["text"].strip() for answer in qa["answers"]]
107
+
108
+ # Features currently used are "context", "question", and "answers".
109
+ # Others are extracted here for the ease of future expansions.
110
+ yield id_, {
111
+ "document_id": document_id,
112
+ "context": context,
113
+ "question": question,
114
+ "is_impossible": is_impossible,
115
+ "id": id_,
116
+ "answers": {
117
+ "answer_start": answer_starts,
118
+ "text": answers,
119
+ },
120
+ }
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"covid_qa_deepset": {"description": "COVID-QA is a Question Answering dataset consisting of 2,019 question/answer pairs annotated by volunteer biomedical experts on scientific articles related to COVID-19.\n", "citation": "@inproceedings{moller2020covid,\n title={COVID-QA: A Question Answering Dataset for COVID-19},\n author={M{\"o}ller, Timo and Reina, Anthony and Jayakumar, Raghavan and Pietsch, Malte},\n booktitle={Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020},\n year={2020}\n}\n", "homepage": "https://github.com/deepset-ai/COVID-QA", "license": "Apache License 2.0", "features": {"document_id": {"dtype": "int32", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "is_impossible": {"dtype": "bool", "id": null, "_type": "Value"}, "id": {"dtype": "int32", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "covid_qa_deepset", "config_name": "covid_qa_deepset", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 65151262, "num_examples": 2019, "dataset_name": "covid_qa_deepset"}}, "download_checksums": {"https://raw.githubusercontent.com/deepset-ai/COVID-QA/master/data/question-answering/COVID-QA.json": {"num_bytes": 4418117, "checksum": "291abf17f4bc2bd343838fd8ef5debb6278bbbb61b262db1f1bd58048fff76b9"}}, "download_size": 4418117, "post_processing_size": null, "dataset_size": 65151262, "size_in_bytes": 69569379}}
dummy/covid_qa_deepset/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81fc18531ae3619c401353c898190cc4f7daa003215bd906f6f8e69dc2599615
3
+ size 29341