khulnasoft commited on
Commit
294a648
·
verified ·
1 Parent(s): 123b5c0

Create compactness_measurements.py

Browse files
Files changed (1) hide show
  1. compactness_measurements.py +111 -0
compactness_measurements.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import stanza
3
+
4
+ nlp = stanza.Pipeline(lang='en', processors='tokenize,pos,lemma,depparse')
5
+ articles = ['a', 'an', 'the']
6
+
7
+ # input file is the compactIE output extractions on a set of sentences. set this variable accordingly.
8
+ INPUT_FILE = 'compactIE_predictions.txt'
9
+
10
+
11
+ def verb_count(part, sent):
12
+ s_doc = nlp(sent)
13
+ text2token = {}
14
+ for i in range(len(s_doc.sentences)):
15
+ tokens = [word.to_dict() for word in s_doc.sentences[i].words]
16
+ for t in tokens:
17
+ text2token[t["text"]] = t
18
+ doc = nlp(part)
19
+ doc = doc.sentences[0]
20
+ tokens = [word.to_dict() for word in doc.words]
21
+ verbs = 0
22
+ for token in tokens:
23
+ if (token['upos'] == 'VERB' and (token['deprel'] not in ['xcomp', 'amod', 'case', 'obl'])) or (token['upos'] == "AUX" and token['deprel'] == 'cop'):
24
+ try:
25
+ if text2token[token["text"]]["deprel"] == token['deprel']:
26
+ # print(token["text"], token["deprel"])
27
+ verbs += 1
28
+ except:
29
+ continue
30
+ return verbs
31
+
32
+
33
+ def clausal_constituents(extraction):
34
+ clausal_consts = 0
35
+ if extraction["predicate"].strip() != "":
36
+ pred_count = verb_count(extraction["predicate"], extraction["sentence"])
37
+ if pred_count > 1:
38
+ clausal_consts += pred_count - 1
39
+
40
+ if extraction["subject"].strip() != "":
41
+ clausal_consts += verb_count(extraction["subject"], extraction["sentence"])
42
+
43
+ if extraction["object"].strip() != "":
44
+ clausal_consts += verb_count(extraction["object"], extraction["sentence"])
45
+ # if clausal_consts > 0:
46
+ # print("clausal consts within extraction: ", extraction["subject"], extraction["predicate"], extraction["object"], clausal_consts)
47
+ return clausal_consts
48
+
49
+
50
+ if __name__ == "__main__":
51
+ extractions_df = pd.DataFrame(columns=["sentence", "subject", "predicate", "object"])
52
+
53
+ with open(INPUT_FILE, 'r') as f:
54
+ lines = f.readlines()
55
+
56
+ sentences = set()
57
+ for line in lines:
58
+ sentence, ext, score = line.split('\t')
59
+ sentences.add(sentence)
60
+ try:
61
+ arg1 = ext[ext.index('<arg1>') + 6:ext.index('</arg1>')]
62
+ except:
63
+ arg1 = ""
64
+ try:
65
+ rel = ext[ext.index('<rel>') + 5:ext.index('</rel>')]
66
+ except:
67
+ rel = ""
68
+ try:
69
+ arg2 = ext[ext.index('<arg2>') + 6:ext.index('</arg2>')]
70
+ except:
71
+ arg2 = ""
72
+ row = pd.DataFrame(
73
+ {"sentence": [sentence],
74
+ "subject": [arg1],
75
+ "predicate": [rel],
76
+ "object": [arg2]}
77
+ )
78
+ extractions_df = pd.concat([extractions_df, row])
79
+
80
+ # overlapping arguments
81
+ grouped_df = extractions_df.groupby("sentence")
82
+ total_number_of_arguments = 0
83
+ number_of_unique_arguments = 0
84
+ num_of_sentences = len(grouped_df.groups.keys())
85
+ for sent in grouped_df.groups.keys():
86
+ per_sentence_argument_set = set()
87
+ sen_group = grouped_df.get_group(sent).reset_index(drop=True)
88
+ extractions_list = list(sen_group.T.to_dict().values())
89
+ for extr in extractions_list:
90
+ if extr["subject"] not in ['', 'nan']:
91
+ total_number_of_arguments += 1
92
+ per_sentence_argument_set.add(extr["subject"])
93
+ if extr["object"] not in ['', 'nan']:
94
+ total_number_of_arguments += 1
95
+ per_sentence_argument_set.add(extr["object"])
96
+ number_of_unique_arguments += len(per_sentence_argument_set)
97
+
98
+ print("average # repetitions per argument: {}".format(total_number_of_arguments/number_of_unique_arguments))
99
+ print("average # extractions per sentence: {}".format(extractions_df.shape[0]/len(sentences)))
100
+ avg_arguments_size = 0.0
101
+ for sent in sentences:
102
+ extractions_per_sent = extractions_df[extractions_df["sentence"] == sent]
103
+
104
+ sent_extractions = extractions_per_sent.shape[0]
105
+ extractions_per_sent["avg_arg_length"] = extractions_per_sent.apply(lambda r: (len(str(r["subject"]).split(' ')) + len(str(r["predicate"]).split(' ')) + len(str(r["object"]).split(' ')))/3, axis=1)
106
+ avg_arguments_size += sum(extractions_per_sent["avg_arg_length"].values.tolist()) / extractions_per_sent.shape[0]
107
+
108
+ print("average length of constituents (per sentence, per extraction): ", avg_arguments_size/len(sentences))
109
+ extractions_df["clause_counts"] = extractions_df.apply(lambda r: clausal_constituents(r), axis=1)
110
+ avg_clause_count = sum(extractions_df["clause_counts"].values.tolist()) / len(sentences)
111
+ print("number of verbal clauses within arguments: ", avg_clause_count)