Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Chinese
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,891 Bytes
f6c86fe
 
 
 
 
e952202
f6c86fe
e952202
 
f6c86fe
 
 
 
 
 
 
 
 
 
e5f086a
2f3190d
a7295a1
28e91a2
a7295a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e91a2
 
92d5052
28e91a2
 
a7295a1
28e91a2
 
 
 
 
a7295a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e91a2
 
92d5052
28e91a2
 
a7295a1
28e91a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c86fe
717778e
f6c86fe
 
 
 
e5f086a
f6c86fe
 
 
e5f086a
 
f6c86fe
 
 
 
 
 
 
 
 
 
 
 
 
e1f8626
f6c86fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f3190d
f6c86fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f8626
 
 
a7295a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- zh
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
paperswithcode_id: c3
pretty_name: C3
dataset_info:
- config_name: dialog
  features:
  - name: documents
    sequence: string
  - name: document_id
    dtype: string
  - name: questions
    sequence:
    - name: question
      dtype: string
    - name: answer
      dtype: string
    - name: choice
      sequence: string
  splits:
  - name: train
    num_bytes: 2039779
    num_examples: 4885
  - name: test
    num_bytes: 646955
    num_examples: 1627
  - name: validation
    num_bytes: 611106
    num_examples: 1628
  download_size: 2073256
  dataset_size: 3297840
- config_name: mixed
  features:
  - name: documents
    sequence: string
  - name: document_id
    dtype: string
  - name: questions
    sequence:
    - name: question
      dtype: string
    - name: answer
      dtype: string
    - name: choice
      sequence: string
  splits:
  - name: train
    num_bytes: 2710473
    num_examples: 3138
  - name: test
    num_bytes: 891579
    num_examples: 1045
  - name: validation
    num_bytes: 910759
    num_examples: 1046
  download_size: 3183780
  dataset_size: 4512811
configs:
- config_name: dialog
  data_files:
  - split: train
    path: dialog/train-*
  - split: test
    path: dialog/test-*
  - split: validation
    path: dialog/validation-*
- config_name: mixed
  data_files:
  - split: train
    path: mixed/train-*
  - split: test
    path: mixed/test-*
  - split: validation
    path: mixed/validation-*
---
# Dataset Card for C3

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** []()
- **Repository:** [link]()
- **Paper:** []()
- **Leaderboard:** []()
- **Point of Contact:** []()

### Dataset Summary

Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.
We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

[More Information Needed]

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation


### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

Dataset provided for research purposes only. Please check dataset license for additional information.

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@article{sun2019investigating,
  title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},
  author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},
  journal={Transactions of the Association for Computational Linguistics},
  year={2020},
  url={https://arxiv.org/abs/1904.09679v3}
}
```


### Contributions

Thanks to [@Narsil](https://github.com/Narsil) for adding this dataset.