Datasets:
File size: 47,828 Bytes
ccf2a29 dcf58bb ced1002 dcf58bb ced1002 dcf58bb 9b3a7f1 dcf58bb 49ff595 dcf58bb a66eee1 dcf58bb 848a103 dcf58bb cf26fa0 dcf58bb 94cae2a dcf58bb 2f02755 d1e0a7b 2f02755 dcf58bb 77e3dbb dcf58bb dea2b7c dcf58bb 3fd01f1 dcf58bb 5b05c07 dcf58bb 7984f81 7f9bf48 dcf58bb 1b8e095 dcf58bb 705ef39 f01d54f 705ef39 0e44d67 dcf58bb d3d1f2e dcf58bb dc85d11 dcf58bb dc6b3d1 c7781f8 dc6b3d1 dcf58bb 8d1f267 dcf58bb d074892 8d1f267 dcf58bb 39cd0bb dcf58bb 39cd0bb dcf58bb 7678e19 dcf58bb a5f060a 7678e19 dcf58bb 79dbf01 dcf58bb 26915f8 2563c8e 6d10369 9fb38d6 6d10369 ccf2a29 dcf58bb 7984f81 7f9bf48 dcf58bb 705ef39 0e44d67 dcf58bb d3d1f2e dcf58bb dc6b3d1 dcf58bb 26915f8 2563c8e 6d10369 90c2ab8 dcf58bb 1edd557 dcf58bb fa0cf3a 7fc7613 b032f09 d183cfb 0b7f69a 3729341 0d712ed 90c2ab8 0b7f69a dcf58bb 7fc7613 dcf58bb 7fc7613 dcf58bb d183cfb b032f09 dcf58bb 0d712ed 0b7f69a 4965c89 ccf2a29 90c2ab8 6e96380 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 90c2ab8 2961f7d 90c2ab8 0d712ed 90c2ab8 fa0cf3a 0b7f69a b032f09 fa0cf3a 3729341 d183cfb 0d712ed fa0cf3a 7fc7613 fa0cf3a 7fc7613 fa0cf3a 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 0d712ed b032f09 fa0cf3a 0d712ed d183cfb fa0cf3a 0d712ed 7fc7613 0b7f69a fa0cf3a 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 2961f7d fa0cf3a 356cde0 2961f7d fa0cf3a 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 7fc7613 1edd557 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a b1386e6 fa0cf3a 356cde0 b1386e6 fa0cf3a 1a846f7 fa0cf3a 356cde0 1a846f7 fa0cf3a c110b86 fa0cf3a 356cde0 c110b86 fa0cf3a 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 3729341 0b7f69a d183cfb 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 0b7f69a 0d712ed 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 7fc7613 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 7fc7613 efcc7c9 fa0cf3a 356cde0 efcc7c9 fa0cf3a b032f09 90c2ab8 fa0cf3a b032f09 356cde0 90c2ab8 fa0cf3a efcc7c9 fa0cf3a 356cde0 efcc7c9 fa0cf3a 345f3a3 90c2ab8 fa0cf3a 356cde0 90c2ab8 fa0cf3a 90c2ab8 4892ec6 90c2ab8 e834a3f 90c2ab8 4892ec6 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 90c2ab8 fa0cf3a 90c2ab8 0d712ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 |
---
dataset_info:
- config_name: arb_Arab
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3069181
num_examples: 1000
download_size: 1767479
dataset_size: 3069181
- config_name: ary_Arab
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3086740
num_examples: 1000
download_size: 1513562
dataset_size: 3086740
- config_name: arz_Arab
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3175887
num_examples: 1000
download_size: 1545667
dataset_size: 3175887
- config_name: asm_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4576909
num_examples: 1000
download_size: 2442437
dataset_size: 4576909
- config_name: bar_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 2494628
num_examples: 1000
download_size: 1540359
dataset_size: 2494628
- config_name: cmn_Hani
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4075430
num_examples: 1000
download_size: 2898317
dataset_size: 4075430
- config_name: dan_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3978961
num_examples: 1000
download_size: 2302765
dataset_size: 3978961
- config_name: default
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 143050387
num_examples: 29557
download_size: 81391060
dataset_size: 143050387
- config_name: fas_Arab
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 5759890
num_examples: 1000
download_size: 2659797
dataset_size: 5759890
- config_name: fil_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3902949
num_examples: 1000
download_size: 2238512
dataset_size: 3902949
- config_name: fin_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4173619
num_examples: 1000
download_size: 2570684
dataset_size: 4173619
- config_name: fra_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3244953
num_examples: 1000
download_size: 1924113
dataset_size: 3244953
- config_name: gmh_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 16120134
num_examples: 1000
download_size: 9110708
dataset_size: 16120134
- config_name: goh_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 5362916
num_examples: 1000
download_size: 2536334
dataset_size: 5362916
- config_name: gsw_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 9009315
num_examples: 1000
download_size: 2759064
dataset_size: 9009315
- config_name: hin_Deva
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 6238691
num_examples: 1000
download_size: 2356629
dataset_size: 6238691
- config_name: ita_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3377465
num_examples: 1000
download_size: 2054456
dataset_size: 3377465
- config_name: jpn_Jpan
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3806334
num_examples: 1000
download_size: 2145429
dataset_size: 3806334
- config_name: lvs_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4608981
num_examples: 1000
download_size: 2807535
dataset_size: 4608981
- config_name: pfl_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 1591321
num_examples: 1000
download_size: 705398
dataset_size: 1591321
- config_name: rus_Cyrl
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 9674640
num_examples: 1000
download_size: 4683863
dataset_size: 9674640
- config_name: slk_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 4016579
num_examples: 1000
download_size: 2631169
dataset_size: 4016579
- config_name: spa_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3047561
num_examples: 1000
download_size: 1802116
dataset_size: 3047561
- config_name: swe_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3512549
num_examples: 1000
download_size: 2113640
dataset_size: 3512549
- config_name: tat_Cyrl
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: Language Score
dtype: float64
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 9908157
num_examples: 1557
download_size: 4731104
dataset_size: 9908157
- config_name: ukr_Cyrl
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 5278303
num_examples: 1000
download_size: 2632887
dataset_size: 5278303
- config_name: vie_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 5446817
num_examples: 1000
download_size: 2739822
dataset_size: 5446817
- config_name: vls
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 1849700
num_examples: 1000
download_size: 1054191
dataset_size: 1849700
- config_name: yue_Hani
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 2181278
num_examples: 1000
download_size: 1577131
dataset_size: 2181278
- config_name: zsm_Latn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: educational_value_labels
sequence: string
- name: annotator_ids
sequence: string
- name: problematic_content_label_present
dtype: bool
- name: problematic_content_label_agreement
dtype: float64
- name: language_names
dtype: string
- name: language_code
dtype: string
splits:
- name: train
num_bytes: 3428921
num_examples: 1000
download_size: 1944810
dataset_size: 3428921
configs:
- config_name: arb_Arab
data_files:
- split: train
path: arb_Arab/train-*
- config_name: ary_Arab
data_files:
- split: train
path: ary_Arab/train-*
- config_name: arz_Arab
data_files:
- split: train
path: arz_Arab/train-*
- config_name: asm_Latn
data_files:
- split: train
path: asm_Latn/train-*
- config_name: bar_Latn
data_files:
- split: train
path: bar_Latn/train-*
- config_name: cmn_Hani
data_files:
- split: train
path: cmn_Hani/train-*
- config_name: dan_Latn
data_files:
- split: train
path: dan_Latn/train-*
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: fas_Arab
data_files:
- split: train
path: fas_Arab/train-*
- config_name: fil_Latn
data_files:
- split: train
path: fil_Latn/train-*
- config_name: fin_Latn
data_files:
- split: train
path: fin_Latn/train-*
- config_name: fra_Latn
data_files:
- split: train
path: fra_Latn/train-*
- config_name: gmh_Latn
data_files:
- split: train
path: gmh_Latn/train-*
- config_name: goh_Latn
data_files:
- split: train
path: goh_Latn/train-*
- config_name: gsw_Latn
data_files:
- split: train
path: gsw_Latn/train-*
- config_name: hin_Deva
data_files:
- split: train
path: hin_Deva/train-*
- config_name: ita_Latn
data_files:
- split: train
path: ita_Latn/train-*
- config_name: jpn_Jpan
data_files:
- split: train
path: jpn_Jpan/train-*
- config_name: lvs_Latn
data_files:
- split: train
path: lvs_Latn/train-*
- config_name: pfl_Latn
data_files:
- split: train
path: pfl_Latn/train-*
- config_name: rus_Cyrl
data_files:
- split: train
path: rus_Cyrl/train-*
- config_name: slk_Latn
data_files:
- split: train
path: slk_Latn/train-*
- config_name: spa_Latn
data_files:
- split: train
path: spa_Latn/train-*
- config_name: swe_Latn
data_files:
- split: train
path: swe_Latn/train-*
- config_name: tat_Cyrl
data_files:
- split: train
path: tat_Cyrl/train-*
- config_name: ukr_Cyrl
data_files:
- split: train
path: ukr_Cyrl/train-*
- config_name: vie_Latn
data_files:
- split: train
path: vie_Latn/train-*
- config_name: vls
data_files:
- split: train
path: vls/train-*
- config_name: yue_Hani
data_files:
- split: train
path: yue_Hani/train-*
- config_name: zsm_Latn
data_files:
- split: train
path: zsm_Latn/train-*
tags:
- argilla
- data-is-better-together
task_categories:
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
- text-classification
language:
- ita
- fra
- fas
- dan
- arz
- ary
- arb
- vie
- ukr
- swe
- spa
- rus
- gmh
- bar
- hin
- arb
- zsm
- yue
- asm
- fil
- cmn
- jpn
- gsw
- fin
- pfl
- goh
pretty_name: FineWeb-c
---
# FineWeb-C: Educational content in many languages, labelled by the community
<center>
<img src="https://huggingface.co./spaces/data-is-better-together/fineweb-communications-pack/resolve/main/fineweb-c-card-header.png" alt="FineWeb 2: A sparkling update with 1000s of languages">
</center>
> *Multilingual data is better together!*
**Note**: This datasets and the dataset card are works in progress. You can help contribute to the dataset [here](https://huggingface.co./spaces/data-is-better-together/fineweb-c) and join the community discussions in [Discord](https://discord.com/channels/879548962464493619/1326130187527651348)!
## What is this?
This is a collaborative, community-driven project that expands upon the [FineWeb2](https://huggingface.co./datasets/HuggingFaceFW/fineweb-2) dataset. Our goal is to create high-quality educational content annotations across hundreds of languages.
By enhancing web content with these annotations, we aim to improve the development of Large Language Models (LLMs) in all languages, making AI technology more accessible and effective globally.
The annotations in this dataset will help train AI systems to automatically identify high-quality educational content in more languages and in turn help build better Large Language Models for all languages.
### What the community is doing:
- For a given language, look at a page of web content from the [FineWeb2](https://huggingface.co./datasets/HuggingFaceFW/fineweb-2) dataset in Argilla.
- Rate how educational the content is.
- Flag problematic content i.e. content that is malformed or in the wrong language.
Once a language reaches 1,000 annotations, the dataset will be included in this dataset! Alongside rating the educational quality of the content, different language communities are discussing other ways to improve the quality of data for their language in our [Discord](https://discord.com/channels/879548962464493619/1326130187527651348) discussion channel.
### What's been done so far?
So far **447** members of the Hugging Face community have submitted **54,586** annotations.
The following languages have reached the 1,000 annotation threshold to be included in the dataset. We'll keep updating this dataset as more annotations are added!
| Language Code | Language Name | Completed Annotations | Annotators |
|--------------|---------------|---------------------|------------|
| arb_Arab | Standard Arabic | 1000 | 10 |
| ary_Arab | Moroccan Arabic | 1000 | 15 |
| arz_Arab | Egyptian Arabic | 1000 | 9 |
| asm_Latn | Assamese | 1000 | 5 |
| bar_Latn | Bavarian | 1000 | 1 |
| cmn_Hani | Mandarin Chinese | 1000 | 3 |
| dan_Latn | Danish | 1000 | 18 |
| fas_Arab | Persian | 1000 | 3 |
| fil_Latn | Filipino | 1000 | 2 |
| fin_Latn | Finnish | 1000 | 7 |
| fra_Latn | French | 1000 | 28 |
| gmh_Latn | Middle High German | 1000 | 1 |
| goh_Latn | Old High German | 1000 | 5 |
| gsw_Latn | Swiss German | 1000 | 2 |
| hin_Deva | Hindi | 1000 | 3 |
| ita_Latn | Italian | 1000 | 26 |
| jpn_Jpan | Japanese | 1000 | 5 |
| pfl_Latn | Palatine German | 1000 | 1 |
| rus_Cyrl | Russian | 1000 | 4 |
| spa_Latn | Spanish | 1000 | 38 |
| swe_Latn | Swedish | 1000 | 8 |
| ukr_Cyrl | Ukrainian | 1000 | 5 |
| vie_Latn | Vietnamese | 1000 | 11 |
| yue_Hani | Cantonese | 1000 | 7 |
| zsm_Latn | Standard Malay | 1000 | 1 |
_You can help contribute to the dataset [here](https://huggingface.co./spaces/data-is-better-together/fineweb-c)._
Below is an overview of the number of annotations submitted for each language (updated daily).
<iframe src="https://huggingface.co./datasets/data-is-better-together/fineweb-c-progress/embed/sql-console/dhn8hw-" frameborder="0" width="100%" height="560px"></iframe>
### Why are we doing this?
There are many languages in the world where no high quality LLMs exist. Having high quality data is a central part of building high quality LLMs. [FineWeb2](https://huggingface.co./datasets/HuggingFaceFW/fineweb-2) is a crucial step in improving the availability of high quality data for many languages. We plan to go a step further.
#### Fineweb-Edu for every language?
[FineWeb-Edu](https://huggingface.co./datasets/HuggingFaceFW/fineweb-edu) is a dataset built on the original [FineWeb](https://huggingface.co./datasets/HuggingFaceFW/fineweb) dataset. The dataset was constructed by developing an educational quality classifier using annotations generated by LLama3-70B-Instruct and using this classifier to retain only the most educational web pages.
FineWeb-Edu outperforms FineWeb on popular benchmark. Crucially, using this approach reduces the amount of data needed to train a high quality LLM reducing the barrier to building a high quality LLM for many languages.
We want to make it possible to build FineWeb-Edu datasets for all the worlds languages. To do this we need annotations in order to train an educational quality classifier.
This in turn will allow us to build the next generation of Large Language Models for many languages.
#### Why not use LLMs to annotate the data?
For high resources languages, using an LLM to generate educational quality annotations can be a good solution. However, for many languages LLMs are not able to generate high quality annotations — or we don't have enough data to validate whether the annotations are correct.
## How can I help?
You can help by contributing to the dataset [here](https://huggingface.co./spaces/data-is-better-together/fineweb-c) and join the community discussions in [Discord](https://discord.com/channels/879548962464493619/1326130187527651348)!
## Why would I bother to contribute to this dataset?
Your contributions directly shape the future of AI in your language. Here's why this matters:
1. Break the AI language barrier: Most commercial AI companies focus on profitable languages, leaving many communities behind. Your work helps bring AI capabilities to more languages.
2. Keep it open: Unlike proprietary datasets locked away by companies, FineWeb2-C is an open dataset. This means anyone can use it to build AI systems that truly serve their community's needs. Through this open approach we also learn about which approaches work best for different languages.
3. Be part of something bigger: Just as Wikipedia showed how volunteers can build invaluable resources, the Hugging Face community has created numerous open models and datasets. You're joining a movement to democratize AI technology.
Every annotation counts. Whether you can contribute ten minutes or ten hours, your input helps build a more inclusive future for AI technology 🤗
## Who contributed to this dataset so far?
These are the top 10 contributors to this release of the dataset. Make sure to give them a follow on the Hub to show your appreciation!
| Hugging Face Username | Submissions |
|----------|------------|
| [stefan-it](https://huggingface.co./stefan-it) | 4,017 |
| [hannayukhymenko](https://huggingface.co./hannayukhymenko) | 1,932 |
| [hasnachouikhi](https://huggingface.co./hasnachouikhi) | 1,865 |
| [tagay1n](https://huggingface.co./tagay1n) | 1,806 |
| [Aivis](https://huggingface.co./Aivis) | 1,600 |
| [ivykopal](https://huggingface.co./ivykopal) | 1,140 |
| [catastropiyush](https://huggingface.co./catastropiyush) | 1,059 |
| [gaydmi](https://huggingface.co./gaydmi) | 1,042 |
| [theblackcat102](https://huggingface.co./theblackcat102) | 1,002 |
| [vikkormallansohn](https://huggingface.co./vikkormallansohn) | 1,000 |
Data work is the under appreciated foundation of AI and ML. This dataset is built by the community for the community. Below is a leaderboard that is updated daily and shows all the contributors to this annotation effort.
<iframe src="https://huggingface.co./datasets/data-is-better-together/fineweb-c-progress/embed/sql-console/DJ2n1Z0" frameborder="0" width="100%" height="560px"></iframe>
#### Language-specific Contributors
Below you can find a list of all the contributors to this release of the dataset for each language ❤️
<details>
<summary>Detailed Contributor Statistics for each language</summary>
### Assamese (asm_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [Arpanjyoti](https://huggingface.co./Arpanjyoti) | 817 |
| [pahigogoi1](https://huggingface.co./pahigogoi1) | 171 |
| [kishorekashyap](https://huggingface.co./kishorekashyap) | 6 |
| [nawaf-helmi123](https://huggingface.co./nawaf-helmi123) | 5 |
| [aelhence](https://huggingface.co./aelhence) | 1 |
</details>
### Bavarian (bar_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [stefan-it](https://huggingface.co./stefan-it) | 1000 |
</details>
### Cantonese (yue_Hani)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [Kiri-Li](https://huggingface.co./Kiri-Li) | 918 |
| [StevenZhou](https://huggingface.co./StevenZhou) | 60 |
| [ShiLuohe](https://huggingface.co./ShiLuohe) | 9 |
| [Shom012](https://huggingface.co./Shom012) | 5 |
| [Jiayi-Pan](https://huggingface.co./Jiayi-Pan) | 4 |
| [littleFishCat](https://huggingface.co./littleFishCat) | 3 |
| [Phoen1xCode](https://huggingface.co./Phoen1xCode) | 1 |
</details>
### Danish (dan_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [rasgaard](https://huggingface.co./rasgaard) | 1000 |
| [JakobBlaa](https://huggingface.co./JakobBlaa) | 978 |
| [saattrupdan](https://huggingface.co./saattrupdan) | 200 |
| [FrLars21](https://huggingface.co./FrLars21) | 80 |
| [markhougaard](https://huggingface.co./markhougaard) | 72 |
| [KennethEnevoldsen](https://huggingface.co./KennethEnevoldsen) | 44 |
| [Apasalic](https://huggingface.co./Apasalic) | 33 |
| [tqvist](https://huggingface.co./tqvist) | 33 |
| [cnila](https://huggingface.co./cnila) | 31 |
| [Soeren-B](https://huggingface.co./Soeren-B) | 28 |
| [KristianL](https://huggingface.co./KristianL) | 22 |
| [mathiasn1](https://huggingface.co./mathiasn1) | 16 |
| [ITK-dev](https://huggingface.co./ITK-dev) | 12 |
| [jannikskytt](https://huggingface.co./jannikskytt) | 8 |
| [AndreasLH](https://huggingface.co./AndreasLH) | 7 |
| [perlausten](https://huggingface.co./perlausten) | 5 |
| [sorenmulli](https://huggingface.co./sorenmulli) | 3 |
| [organicoder](https://huggingface.co./organicoder) | 1 |
</details>
### Egyptian Arabic (arz_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [mmhamdy](https://huggingface.co./mmhamdy) | 734 |
| [aishahamdy](https://huggingface.co./aishahamdy) | 141 |
| [oumayma03](https://huggingface.co./oumayma03) | 54 |
| [omarelshehy](https://huggingface.co./omarelshehy) | 46 |
| [ghada00](https://huggingface.co./ghada00) | 14 |
| [heba1998](https://huggingface.co./heba1998) | 10 |
| [chemouda](https://huggingface.co./chemouda) | 3 |
| [aammari](https://huggingface.co./aammari) | 2 |
| [amreleraqi](https://huggingface.co./amreleraqi) | 1 |
</details>
### Filipino (fil_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [mhyles](https://huggingface.co./mhyles) | 993 |
| [maryclara](https://huggingface.co./maryclara) | 7 |
</details>
### Finnish (fin_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [RASMUS](https://huggingface.co./RASMUS) | 472 |
| [RajaVardhan](https://huggingface.co./RajaVardhan) | 350 |
| [askokauppi](https://huggingface.co./askokauppi) | 120 |
| [readd](https://huggingface.co./readd) | 65 |
| [Zakalaklaa](https://huggingface.co./Zakalaklaa) | 4 |
| [antupis](https://huggingface.co./antupis) | 3 |
| [valstu](https://huggingface.co./valstu) | 3 |
</details>
### French (fra_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [BlackMinstrel](https://huggingface.co./BlackMinstrel) | 354 |
| [lbourdois](https://huggingface.co./lbourdois) | 320 |
| [Ameeeee](https://huggingface.co./Ameeeee) | 100 |
| [EAntoine](https://huggingface.co./EAntoine) | 50 |
| [chemouda](https://huggingface.co./chemouda) | 30 |
| [Bassem-Abidi](https://huggingface.co./Bassem-Abidi) | 27 |
| [BrigitteTousi](https://huggingface.co./BrigitteTousi) | 20 |
| [copacetique](https://huggingface.co./copacetique) | 20 |
| [FremyCompany](https://huggingface.co./FremyCompany) | 18 |
| [nicolas-perreaux](https://huggingface.co./nicolas-perreaux) | 13 |
| [fdaudens](https://huggingface.co./fdaudens) | 10 |
| [joelg](https://huggingface.co./joelg) | 8 |
| [antoinejeannot](https://huggingface.co./antoinejeannot) | 7 |
| [clem](https://huggingface.co./clem) | 6 |
| [Aviv-anthonnyolime](https://huggingface.co./Aviv-anthonnyolime) | 5 |
| [rdecoupes](https://huggingface.co./rdecoupes) | 5 |
| [pagezyhf](https://huggingface.co./pagezyhf) | 3 |
| [raveneau](https://huggingface.co./raveneau) | 3 |
| [adrienconrath](https://huggingface.co./adrienconrath) | 3 |
| [arthurmaas](https://huggingface.co./arthurmaas) | 2 |
| [owner](https://huggingface.co./owner) | 1 |
| [JohnnyTestin](https://huggingface.co./JohnnyTestin) | 1 |
| [thomwolf](https://huggingface.co./thomwolf) | 1 |
| [LowFace](https://huggingface.co./LowFace) | 1 |
| [Creazycreator](https://huggingface.co./Creazycreator) | 1 |
| [Eyel](https://huggingface.co./Eyel) | 1 |
| [Pipistra](https://huggingface.co./Pipistra) | 1 |
| [wraps](https://huggingface.co./wraps) | 1 |
</details>
### Hindi (hin_Deva)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [catastropiyush](https://huggingface.co./catastropiyush) | 926 |
| [pp](https://huggingface.co./pp) | 73 |
| [Urmish](https://huggingface.co./Urmish) | 1 |
</details>
### Italian (ita_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [s-conia](https://huggingface.co./s-conia) | 963 |
| [Pinball](https://huggingface.co./Pinball) | 415 |
| [efederici](https://huggingface.co./efederici) | 152 |
| [ciwrl](https://huggingface.co./ciwrl) | 100 |
| [sted97](https://huggingface.co./sted97) | 80 |
| [riccorl](https://huggingface.co./riccorl) | 68 |
| [al3ssia](https://huggingface.co./al3ssia) | 53 |
| [mik3ml](https://huggingface.co./mik3ml) | 27 |
| [sarapapi](https://huggingface.co./sarapapi) | 22 |
| [sofdog](https://huggingface.co./sofdog) | 21 |
| [Gionathan](https://huggingface.co./Gionathan) | 19 |
| [nonsonpratico](https://huggingface.co./nonsonpratico) | 18 |
| [caesar-one](https://huggingface.co./caesar-one) | 15 |
| [qJakc](https://huggingface.co./qJakc) | 9 |
| [gsarti](https://huggingface.co./gsarti) | 8 |
| [Pipistra](https://huggingface.co./Pipistra) | 7 |
| [itsMattei](https://huggingface.co./itsMattei) | 5 |
| [anakin87](https://huggingface.co./anakin87) | 4 |
| [DeepMount00](https://huggingface.co./DeepMount00) | 4 |
| [ing-ff](https://huggingface.co./ing-ff) | 4 |
| [vittoriomaggio](https://huggingface.co./vittoriomaggio) | 2 |
| [HuggingSara](https://huggingface.co./HuggingSara) | 2 |
| [Antix5](https://huggingface.co./Antix5) | 2 |
| [Detsutut](https://huggingface.co./Detsutut) | 1 |
| [lingvenvist](https://huggingface.co./lingvenvist) | 1 |
| [marco-stranisci](https://huggingface.co./marco-stranisci) | 1 |
</details>
### Japanese (jpn_Jpan)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [LoneWolfgang](https://huggingface.co./LoneWolfgang) | 990 |
| [mkshing](https://huggingface.co./mkshing) | 5 |
| [underspirit](https://huggingface.co./underspirit) | 3 |
| [LoneWolfgangKlein](https://huggingface.co./LoneWolfgangKlein) | 1 |
| [kevineen](https://huggingface.co./kevineen) | 1 |
</details>
### Mandarin Chinese (cmn_Hani)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [paperplanedeemo](https://huggingface.co./paperplanedeemo) | 978 |
| [guokan-shang](https://huggingface.co./guokan-shang) | 12 |
| [AdinaY](https://huggingface.co./AdinaY) | 10 |
</details>
### Middle High German (gmh_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [stefan-it](https://huggingface.co./stefan-it) | 1000 |
</details>
### Moroccan Arabic (ary_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [Ihssane123](https://huggingface.co./Ihssane123) | 499 |
| [imomayiz](https://huggingface.co./imomayiz) | 234 |
| [NouhailaChab05](https://huggingface.co./NouhailaChab05) | 120 |
| [nouamanetazi](https://huggingface.co./nouamanetazi) | 58 |
| [master12gx](https://huggingface.co./master12gx) | 37 |
| [oumayma03](https://huggingface.co./oumayma03) | 21 |
| [Overowser](https://huggingface.co./Overowser) | 14 |
| [SoufianeDahimi](https://huggingface.co./SoufianeDahimi) | 12 |
| [adnananouzla](https://huggingface.co./adnananouzla) | 11 |
| [alielfilali01](https://huggingface.co./alielfilali01) | 3 |
| [staghado](https://huggingface.co./staghado) | 3 |
| [olafdil](https://huggingface.co./olafdil) | 2 |
| [maghwa](https://huggingface.co./maghwa) | 2 |
| [0xTechVio](https://huggingface.co./0xTechVio) | 1 |
| [maggierphunt](https://huggingface.co./maggierphunt) | 1 |
</details>
### Old High German (goh_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [stefan-it](https://huggingface.co./stefan-it) | 976 |
| [Anna-Katharina](https://huggingface.co./Anna-Katharina) | 15 |
| [johko](https://huggingface.co./johko) | 7 |
| [gaydmi](https://huggingface.co./gaydmi) | 1 |
| [Astral07](https://huggingface.co./Astral07) | 1 |
</details>
### Palatine German (pfl_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [stefan-it](https://huggingface.co./stefan-it) | 1000 |
</details>
### Persian (fas_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [Maani](https://huggingface.co./Maani) | 985 |
| [mehrdadazizi](https://huggingface.co./mehrdadazizi) | 14 |
| [kargaranamir](https://huggingface.co./kargaranamir) | 1 |
</details>
### Russian (rus_Cyrl)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [kitano-o](https://huggingface.co./kitano-o) | 593 |
| [kristaller486](https://huggingface.co./kristaller486) | 396 |
| [knyazer](https://huggingface.co./knyazer) | 9 |
| [alialek](https://huggingface.co./alialek) | 5 |
</details>
### Spanish (spa_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [beta3](https://huggingface.co./beta3) | 593 |
| [C2MV](https://huggingface.co./C2MV) | 417 |
| [dvilasuero](https://huggingface.co./dvilasuero) | 260 |
| [amunozo](https://huggingface.co./amunozo) | 200 |
| [jafhaponiuk](https://huggingface.co./jafhaponiuk) | 180 |
| [nataliaElv](https://huggingface.co./nataliaElv) | 91 |
| [gabrielmbmb](https://huggingface.co./gabrielmbmb) | 56 |
| [versae](https://huggingface.co./versae) | 53 |
| [jalonso](https://huggingface.co./jalonso) | 50 |
| [JorgeAV](https://huggingface.co./JorgeAV) | 32 |
| [Leiyre](https://huggingface.co./Leiyre) | 31 |
| [ouhenio](https://huggingface.co./ouhenio) | 30 |
| [jfcalvo](https://huggingface.co./jfcalvo) | 24 |
| [ehcalabres](https://huggingface.co./ehcalabres) | 14 |
| [frascuchon](https://huggingface.co./frascuchon) | 12 |
| [freddyaboulton](https://huggingface.co./freddyaboulton) | 11 |
| [davidreyblanco](https://huggingface.co./davidreyblanco) | 11 |
| [fractalLuis](https://huggingface.co./fractalLuis) | 10 |
| [portega](https://huggingface.co./portega) | 9 |
| [owner](https://huggingface.co./owner) | 5 |
| [plaguss](https://huggingface.co./plaguss) | 5 |
| [escorciav](https://huggingface.co./escorciav) | 4 |
| [javiimts](https://huggingface.co./javiimts) | 4 |
| [daqc](https://huggingface.co./daqc) | 3 |
| [Ameeeee](https://huggingface.co./Ameeeee) | 2 |
| [Locutusque](https://huggingface.co./Locutusque) | 2 |
| [santyzenith](https://huggingface.co./santyzenith) | 2 |
| [inigo-imaz](https://huggingface.co./inigo-imaz) | 2 |
| [domenzain](https://huggingface.co./domenzain) | 2 |
| [davanstrien](https://huggingface.co./davanstrien) | 2 |
| [GregThienp](https://huggingface.co./GregThienp) | 2 |
| [librarian-bot](https://huggingface.co./librarian-bot) | 1 |
| [mariagrandury](https://huggingface.co./mariagrandury) | 1 |
| [LuisVasquezBSC](https://huggingface.co./LuisVasquezBSC) | 1 |
| [joaquincabezas](https://huggingface.co./joaquincabezas) | 1 |
| [Creazycreator](https://huggingface.co./Creazycreator) | 1 |
| [Nefhis](https://huggingface.co./Nefhis) | 1 |
| [Djsmartberry](https://huggingface.co./Djsmartberry) | 1 |
</details>
### Standard Arabic (arb_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [hasnachouikhi](https://huggingface.co./hasnachouikhi) | 1000 |
| [alielfilali01](https://huggingface.co./alielfilali01) | 4 |
</details>
### Standard Arabic (arb_Arab)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [hasnachouikhi](https://huggingface.co./hasnachouikhi) | 865 |
| [chemouda](https://huggingface.co./chemouda) | 102 |
| [oumayma03](https://huggingface.co./oumayma03) | 12 |
| [ahmedselhady](https://huggingface.co./ahmedselhady) | 9 |
| [staghado](https://huggingface.co./staghado) | 7 |
| [alielfilali01](https://huggingface.co./alielfilali01) | 4 |
| [YassineL](https://huggingface.co./YassineL) | 2 |
| [maggierphunt](https://huggingface.co./maggierphunt) | 1 |
</details>
### Standard Malay (zsm_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [theblackcat102](https://huggingface.co./theblackcat102) | 1000 |
</details>
### Swedish (swe_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [menbom](https://huggingface.co./menbom) | 472 |
| [Ekgren](https://huggingface.co./Ekgren) | 203 |
| [Lauler](https://huggingface.co./Lauler) | 160 |
| [apsod](https://huggingface.co./apsod) | 93 |
| [bjarlestam](https://huggingface.co./bjarlestam) | 48 |
| [PierreMesure](https://huggingface.co./PierreMesure) | 24 |
| [AntonVic](https://huggingface.co./AntonVic) | 5 |
| [ohallstrom](https://huggingface.co./ohallstrom) | 1 |
</details>
### Swiss German (gsw_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [hannayukhymenko](https://huggingface.co./hannayukhymenko) | 957 |
| [Anna-Katharina](https://huggingface.co./Anna-Katharina) | 43 |
</details>
### Ukrainian (ukr_Cyrl)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [hannayukhymenko](https://huggingface.co./hannayukhymenko) | 975 |
| [reciprocate](https://huggingface.co./reciprocate) | 18 |
| [realPivo](https://huggingface.co./realPivo) | 5 |
| [robinhad](https://huggingface.co./robinhad) | 1 |
| [RabotiahovDmytro](https://huggingface.co./RabotiahovDmytro) | 1 |
</details>
### Vietnamese (vie_Latn)
<details>
<summary>User Statistics Table (Minimum 1 submissions)</summary>
| Username | Submissions |
|----------|------------|
| [anhha9](https://huggingface.co./anhha9) | 927 |
| [HoangHa](https://huggingface.co./HoangHa) | 864 |
| [LHPKAI](https://huggingface.co./LHPKAI) | 454 |
| [presencesw](https://huggingface.co./presencesw) | 312 |
| [convoicon](https://huggingface.co./convoicon) | 148 |
| [thangvip](https://huggingface.co./thangvip) | 104 |
| [High-Will](https://huggingface.co./High-Will) | 19 |
| [Stella9924](https://huggingface.co./Stella9924) | 15 |
| [PhongLT](https://huggingface.co./PhongLT) | 13 |
| [toanchuyenkhoa](https://huggingface.co./toanchuyenkhoa) | 9 |
| [TienAnh](https://huggingface.co./TienAnh) | 4 |
</details>
</details>
## Using this dataset
The dataset has a `default` config that contains all the language and configs per language.
To download the dataset using the Hugging Face `datasets` library, you can use the following code:
```python
from datasets import load_dataset
dataset = load_dataset("data-is-better-together/fineweb-c")
```
To download a specific language, you can use the following code:
```python
dataset = load_dataset("data-is-better-together/fineweb-c", name="cmn_Hani")
```
You can also download the dataset using Pandas
```python
import pandas as pd
# Login using e.g. `huggingface-cli login` to access this dataset
df = pd.read_parquet("hf://datasets/data-is-better-together/fineweb-c/arb_Arab/train-00000-of-00001.parquet")
```
or polars
```python
import polars as pl
# Login using e.g. `huggingface-cli login` to access this dataset
df = pl.read_parquet('hf://datasets/davanstrien/fineweb-c-exported-data-test/arb_Arab/train-00000-of-00001.parquet')
```
## Data Fields
The dataset contains the following columns:
| Column Name | Type | Description |
| ----------------------------------- | ------------ | ---------------------------------------------------------------------------------------------- |
| id | string | A unique identifier for each annotation record |
| text | string | The text of the web page |
| educational_value_labels | list[string] | A list of labels indicating the educational value of the web page rated by the community |
| annotator_ids | string | A string ID for the annotator |
| problematic_content_label_present | boolean | A flag indicating the presence of at leaste one 'problematic' label being assigned to the text |
| problematic_content_label_agreement | float | The agreement of the annotator with the problematic content label |
| language_names | str | The name of the language page |
| language_code | str | The code of the language |
| | | |
The main things to note (we'll update this as we get more data)
- Some languages already have multiple annotations per page. So far we haven't done any processing on these rows so people are free to calculate the agreement of the annotators in whatever way they want.
- For languages with many active annotators, we may increase the overlap of annotations over time to further improve the quality of the dataset.
- Some languages contain many `problematic content` labels. These often occur when the language detection was not correct. There is a `problematic_content_label_present` boolean column that indicates if the page contains at least one `problematic content` label. If you want to remove these rows you can do so by filtering on this column. Alternatively, you can use the `problematic_content_label_agreement` column to filter on the agreement of the annotators i.e. only remove rows where the annotators agree on the `problematic content` label. For many of the most active language efforts we're working with the community to improve the quality of the data so we hope the number of `problematic content` labels will decrease over time.
## Licensing Information
The dataset is released under the Open Data Commons Attribution License (ODC-By) v1.0 license. The use of this dataset is also subject to CommonCrawl's Terms of Use.
## Citation
_Citation information needs to be added_
## Last Updated
2025-01-30 |