|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import os |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{Sofwath_2023, |
|
title = "Dhivehi Presidential Speech Dataset", |
|
url = "https://huggingface.co./datasets/dash8x/presidential_speech", |
|
journal = "Hugging Face", |
|
author = "Sofwath", |
|
year = "2018", |
|
month = jul |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Dhivehi Presidential Speech is a Dhivehi speech dataset created from data extracted and |
|
processed by [Sofwath](https://github.com/Sofwath) as part of a collection of Dhivehi |
|
datasets found [here](https://github.com/Sofwath/DhivehiDatasets). |
|
|
|
The dataset contains around 2.5 hrs (1 GB) of speech collected from Maldives President's Office |
|
consisting of 7 speeches given by President Yaameen Abdhul Gayyoom. |
|
""" |
|
|
|
_HOMEPAGE = 'https://github.com/Sofwath/DhivehiDatasets' |
|
|
|
_LICENSE = 'CC BY-NC-SA 4.0' |
|
|
|
|
|
_DATA_URL = 'data' |
|
|
|
_PROMPTS_URLS = { |
|
'train': 'data/metadata_train.tsv.gz', |
|
'test': 'data/metadata_test.tsv.gz', |
|
'validation': 'data/metadata_validation.tsv.gz', |
|
} |
|
|
|
|
|
class DhivehiPresidentialSpeech(datasets.GeneratorBasedBuilder): |
|
"""Dhivehi Presidential Speech is a free Dhivehi speech corpus consisting of around 2.5 hours of |
|
recorded speech prepared for Dhivehi Automatic Speech Recognition task.""" |
|
|
|
VERSION = datasets.Version('1.0.0') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'path': datasets.Value('string'), |
|
'audio': datasets.Audio(sampling_rate=16_000), |
|
'sentence': datasets.Value('string'), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
|
|
dl_manager.download_config.ignore_url_params = True |
|
audio_path = {} |
|
local_extracted_archive = {} |
|
metadata_path = {} |
|
|
|
split_type = { |
|
'train': datasets.Split.TRAIN, |
|
'test': datasets.Split.TEST, |
|
'validation': datasets.Split.VALIDATION, |
|
} |
|
|
|
for split in split_type: |
|
audio_path[split] = dl_manager.download(f'{_DATA_URL}/audio_{split}.tar.gz') |
|
local_extracted_archive[split] = dl_manager.extract(audio_path[split]) if not dl_manager.is_streaming else None |
|
metadata_path[split] = dl_manager.download_and_extract(f'{_DATA_URL}/metadata_{split}.csv.gz') |
|
|
|
path_to_clips = 'dv-presidential-speech' |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=split_type[split], |
|
gen_kwargs={ |
|
'local_extracted_archive': local_extracted_archive[split], |
|
'audio_files': dl_manager.iter_archive(audio_path[split]), |
|
'metadata_path': metadata_path[split], |
|
'path_to_clips': f'{path_to_clips}-{split}/waves', |
|
}, |
|
) for split in split_type |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
local_extracted_archive, |
|
audio_files, |
|
metadata_path, |
|
path_to_clips, |
|
): |
|
"""Yields examples.""" |
|
data_fields = list(self._info().features.keys()) |
|
metadata = {} |
|
with open(metadata_path, 'r', encoding='utf-8') as f: |
|
reader = csv.reader(f, delimiter=',', quotechar='"') |
|
|
|
for row in reader: |
|
row_dict = {} |
|
row_dict['path'] = row[0] |
|
row_dict['sentence'] = row[1] |
|
|
|
|
|
for field in data_fields: |
|
if field not in row_dict: |
|
row_dict[field] = '' |
|
|
|
metadata[row_dict['path']] = row_dict |
|
|
|
id_ = 0 |
|
for path, f in audio_files: |
|
file_name = os.path.splitext(os.path.basename(path))[0] |
|
|
|
if file_name in metadata: |
|
result = dict(metadata[file_name]) |
|
|
|
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path |
|
result['audio'] = {'path': path, 'bytes': f.read()} |
|
result['path'] = path |
|
yield id_, result |
|
id_ += 1 |