"""CrossSum cross-lingual abstractive summarization dataset.""" import json import os import datasets _CITATION = """\ @article{hasan2021crosssum, author = {Tahmid Hasan and Abhik Bhattacharjee and Wasi Uddin Ahmad and Yuan-Fang Li and Yong-bin Kang and Rifat Shahriyar}, title = {CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs}, journal = {CoRR}, volume = {abs/2112.08804}, year = {2021}, url = {https://arxiv.org/abs/2112.08804}, eprinttype = {arXiv}, eprint = {2112.08804} } """ _DESCRIPTION = """\ We present CrossSum, a large-scale dataset comprising 1.70 million cross-lingual article summary samples in 1500+ language-pairs constituting 45 languages. We use the multilingual XL-Sum dataset and align identical articles written in different languages via crosslingual retrieval using a language-agnostic representation model. """ _HOMEPAGE = "https://github.com/csebuetnlp/CrossSum" _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)" _URL = "https://huggingface.co./datasets/csebuetnlp/CrossSum/resolve/main/data/{}-{}_CrossSum.tar.bz2" _LANGUAGES = [ "oromo", "french", "amharic", "arabic", "azerbaijani", "bengali", "burmese", "chinese_simplified", "chinese_traditional", "welsh", "english", "kirundi", "gujarati", "hausa", "hindi", "igbo", "indonesian", "japanese", "korean", "kyrgyz", "marathi", "spanish", "scottish_gaelic", "nepali", "pashto", "persian", "pidgin", "portuguese", "punjabi", "russian", "serbian_cyrillic", "serbian_latin", "sinhala", "somali", "swahili", "tamil", "telugu", "thai", "tigrinya", "turkish", "ukrainian", "urdu", "uzbek", "vietnamese", "yoruba", ] class Crosssum(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name="{}-{}".format(src_lang, tgt_lang), version=datasets.Version("1.0.0") ) for src_lang in _LANGUAGES for tgt_lang in _LANGUAGES ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "source_url": datasets.Value("string"), "target_url": datasets.Value("string"), "summary": datasets.Value("string"), "text": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, version=self.VERSION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" lang_pairs = str(self.config.name) url = _URL.format(*lang_pairs.split("-")) data_dir = dl_manager.download_and_extract(url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir, lang_pairs + "_train.jsonl"), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, lang_pairs + "_test.jsonl"), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join(data_dir, lang_pairs + "_val.jsonl"), }, ), ] def _generate_examples(self, filepath): """Yields examples as (key, example) tuples.""" with open(filepath, encoding="utf-8") as f: idx_ = -1 for idx_, row in enumerate(f): data = json.loads(row) yield idx_, { "source_url": data["source_url"], "target_url": data["target_url"], "summary": data["summary"], "text": data["text"], } # empty splits for extremely low-resource pairs if idx_ == -1: yield 0, { "source_url": "", "target_url": "", "summary": "", "text": "", }