File size: 29,161 Bytes
dc37d9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
import abc
import json
import math
import pathlib
import re
from collections import defaultdict
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Optional, Tuple, TypedDict
import datasets as ds
import numpy as np
import pandas as pd
from datasets.utils.logging import get_logger
from PIL import Image
from PIL.Image import Image as PilImage
logger = get_logger(__name__)
JsonDict = Dict[str, Any]
_DESCRIPTION = """
THE DATASET: We mined over 9.3k free Android apps from 27 categories to create the Rico dataset. Apps in the dataset had an average user rating of 4.1. The Rico dataset contains visual, textual, structural, and interactive design properties of more than 66k unique UI screens and 3M UI elements.
"""
_CITATION = """\
@inproceedings{deka2017rico,
title={Rico: A mobile app dataset for building data-driven design applications},
author={Deka, Biplab and Huang, Zifeng and Franzen, Chad and Hibschman, Joshua and Afergan, Daniel and Li, Yang and Nichols, Jeffrey and Kumar, Ranjitha},
booktitle={Proceedings of the 30th annual ACM symposium on user interface software and technology},
pages={845--854},
year={2017}
}
"""
_HOMEPAGE = "http://www.interactionmining.org/rico.html"
_LICENSE = "Unknown"
def to_snake_case(name):
name = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name)
name = re.sub("__([A-Z])", r"_\1", name)
name = re.sub("([a-z0-9])([A-Z])", r"\1_\2", name)
return name.lower()
class TrainValidationTestSplit(TypedDict):
train: List[Any]
validation: List[Any]
test: List[Any]
class UiLayoutVectorSample(TypedDict):
vector: np.ndarray
name: str
@dataclass(eq=True)
class RicoProcessor(object, metaclass=abc.ABCMeta):
@abc.abstractmethod
def get_features(self) -> ds.Features:
raise NotImplementedError
@abc.abstractmethod
def load_examples(self, *args, **kwargs) -> List[Any]:
raise NotImplementedError
@abc.abstractmethod
def split_generators(self, *args, **kwargs) -> List[ds.SplitGenerator]:
raise NotImplementedError
@abc.abstractmethod
def generate_examples(self, examples: List[Any]):
raise NotImplementedError
class RicoTaskProcessor(RicoProcessor, metaclass=abc.ABCMeta):
def _flatten_children(
self,
children,
children_id: Optional[int] = None,
result: Optional[Dict[str, Any]] = None,
):
result = result or defaultdict(list)
if children is None:
return result
children_id = children_id or 0
for child in children:
if not child:
continue
if "children" not in child:
continue
result = self._flatten_children(
children=child.pop("children"),
children_id=children_id + 1,
result=result,
)
assert result is not None
result[f"children_{children_id}"].append(child)
return result
def _load_image(self, file_path: pathlib.Path) -> PilImage:
logger.debug(f"Load from {file_path}")
return Image.open(file_path)
def _load_json(self, file_path: pathlib.Path) -> JsonDict:
logger.debug(f"Load from {file_path}")
with file_path.open("r") as rf:
json_dict = json.load(rf)
return json_dict
def _split_dataset(
self,
examples: List[Any],
train_ratio: float,
validation_ratio: float,
test_ratio: float,
) -> TrainValidationTestSplit:
assert train_ratio + validation_ratio + test_ratio == 1.0
num_examples = len(examples)
num_tng = math.ceil(num_examples * train_ratio) # type: ignore
num_val = math.ceil(num_examples * validation_ratio) # type: ignore
num_tst = math.ceil(num_examples * test_ratio) # type: ignore
tng_examples = examples[:num_tng]
val_examples = examples[num_tng : num_tng + num_val]
tst_examples = examples[num_tng + num_val : num_tng + num_val + num_tst]
assert len(tng_examples) + len(val_examples) + len(tst_examples) == num_examples
return {
"train": tng_examples,
"validation": val_examples,
"test": tst_examples,
}
def _load_and_split_dataset(
self,
base_dir: pathlib.Path,
train_ratio: float,
validation_ratio: float,
test_ratio: float,
) -> TrainValidationTestSplit:
examples = self.load_examples(base_dir)
return self._split_dataset(
examples=examples,
train_ratio=train_ratio,
validation_ratio=validation_ratio,
test_ratio=test_ratio,
)
def split_generators(
self,
base_dir: pathlib.Path,
train_ratio: float,
validation_ratio: float,
test_ratio: float,
) -> List[ds.SplitGenerator]:
split_examples = self._load_and_split_dataset(
base_dir=pathlib.Path(base_dir),
train_ratio=train_ratio,
validation_ratio=validation_ratio,
test_ratio=test_ratio,
)
return [
ds.SplitGenerator(
name=ds.Split.TRAIN, # type: ignore
gen_kwargs={"examples": split_examples["train"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION, # type: ignore
gen_kwargs={"examples": split_examples["validation"]},
),
ds.SplitGenerator(
name=ds.Split.TEST, # type: ignore
gen_kwargs={"examples": split_examples["test"]},
),
]
@abc.abstractmethod
def load_examples(self, base_dir: pathlib.Path) -> List[Any]:
raise NotImplementedError
class RicoMetadataProcessor(RicoProcessor, metaclass=abc.ABCMeta):
@abc.abstractmethod
def load_examples(self, csv_file: pathlib.Path) -> List[Any]:
raise NotImplementedError
@abc.abstractmethod
def split_generators(self, csv_file: pathlib.Path) -> List[ds.SplitGenerator]:
raise NotImplementedError
@dataclass
class ActivityClass(object):
abs_pos: bool
adapter_view: bool
ancestors: List[str]
bounds: Tuple[int, int, int, int]
clickable: bool
content_desc: List[str]
draw: bool
enabled: bool
focused: bool
focusable: bool
klass: str
long_clickable: bool
pressed: bool
pointer: str
scrollable_horizontal: bool
scrollable_vertical: bool
selected: bool
visibility: str
visible_to_user: bool
package: Optional[str] = None
resource_id: Optional[str] = None
rel_bounds: Optional[Tuple[int, int, int, int]] = None
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "ActivityClass":
json_dict = {k.replace("-", "_"): v for k, v in json_dict.items()}
json_dict["klass"] = json_dict.pop("class")
return cls(**json_dict)
@dataclass
class UiComponent(object):
ancestors: List[str]
bounds: Tuple[int, int, int, int]
component_label: str
clickable: bool
klass: str
icon_class: Optional[str] = None
resource_id: Optional[str] = None
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "UiComponent":
json_dict = {
to_snake_case(k.replace("-", "_")): v for k, v in json_dict.items()
}
json_dict["klass"] = json_dict.pop("class")
return cls(**json_dict)
@dataclass
class Activity(object):
root: ActivityClass
children: List[List[ActivityClass]]
added_fragments: List[str]
active_fragments: List[str]
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "Activity":
root = ActivityClass.from_dict(json_dict.pop("root"))
children = [
[
ActivityClass.from_dict(activity_class)
for activity_class in activity_classes
]
for activity_classes in json_dict.pop("children")
]
return cls(root=root, children=children, **json_dict)
@dataclass
class InteractionTracesData(object):
activity_name: str
activity: Activity
is_keyboard_deployed: str
request_id: str
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "InteractionTracesData":
activity_dict = json_dict.pop("activity")
activity = Activity.from_dict(activity_dict)
return cls(activity=activity, **json_dict)
@dataclass
class UiScreenshotsAndViewHierarchiesData(InteractionTracesData):
screenshot: PilImage
@classmethod
def from_dict(cls, json_dict: JsonDict) -> "UiScreenshotsAndViewHierarchiesData":
activity_dict = json_dict.pop("activity")
activity = Activity.from_dict(activity_dict)
return cls(activity=activity, **json_dict)
@dataclass
class UiScreenshotsAndHierarchiesWithSemanticAnnotationsData(object):
ancestors: List[str]
klass: str
bounds: Tuple[int, int, int, int]
clickable: bool
children: List[List[UiComponent]]
screenshot: PilImage
@classmethod
def from_dict(
cls, json_dict: JsonDict
) -> "UiScreenshotsAndHierarchiesWithSemanticAnnotationsData":
json_dict["klass"] = json_dict.pop("class")
children = [
[UiComponent.from_dict(ui_component) for ui_component in ui_components]
for ui_components in json_dict.pop("children")
]
return cls(children=children, **json_dict)
@dataclass
class Gesture(object):
ui_id: int
xy: List[Tuple[float, float]]
@classmethod
def from_dict_to_gestures(cls, json_dict: JsonDict) -> List["Gesture"]:
return [Gesture(ui_id=int(k), xy=v) for k, v in json_dict.items()]
class InteractionTracesProcessor(RicoTaskProcessor):
def get_activity_class_features_dict(self):
return {
"abs_pos": ds.Value("bool"),
"adapter_view": ds.Value("bool"),
"ancestors": ds.Sequence(ds.Value("string")),
"bounds": ds.Sequence(ds.Value("int64")),
"clickable": ds.Value("bool"),
"content_desc": ds.Sequence(ds.Value("string")),
"draw": ds.Value("bool"),
"enabled": ds.Value("bool"),
"focusable": ds.Value("bool"),
"focused": ds.Value("bool"),
"klass": ds.Value("string"),
"long_clickable": ds.Value("bool"),
"package": ds.Value("string"),
"pressed": ds.Value("string"),
"pointer": ds.Value("string"),
"rel_bounds": ds.Sequence(ds.Value("int64")),
"resource_id": ds.Value("string"),
"scrollable_horizontal": ds.Value("bool"),
"scrollable_vertical": ds.Value("bool"),
"selected": ds.Value("bool"),
"visibility": ds.Value("string"),
"visible_to_user": ds.Value("bool"),
}
def get_activity_features_dict(self, activity_class):
return {
"activity_name": ds.Value("string"),
"activity": {
"root": activity_class,
"children": ds.Sequence(ds.Sequence(activity_class)),
"added_fragments": ds.Sequence(ds.Value("string")),
"active_fragments": ds.Sequence(ds.Value("string")),
},
"is_keyboard_deployed": ds.Value("bool"),
"request_id": ds.Value("string"),
}
def get_features(self) -> ds.Features:
activity_class = self.get_activity_class_features_dict()
activity = self.get_activity_features_dict(activity_class)
return ds.Features(
{
"screenshots": ds.Sequence(ds.Image()),
"view_hierarchies": ds.Sequence(activity),
"gestures": ds.Sequence(
{
"ui_id": ds.Value("int32"),
"xy": ds.Sequence(ds.Sequence(ds.Value("float32"))),
}
),
}
)
def load_examples(self, base_dir: pathlib.Path) -> List[pathlib.Path]:
task_dir = base_dir / "filtered_traces"
return [d for d in task_dir.iterdir() if d.is_dir()]
def generate_examples(self, examples: List[pathlib.Path]):
idx = 0
for trace_base_dir in examples:
for trace_dir in trace_base_dir.iterdir():
screenshots_dir = trace_dir / "screenshots"
screenshots = [
self._load_image(f)
for f in screenshots_dir.iterdir()
if not f.name.startswith("._")
]
view_hierarchies_dir = trace_dir / "view_hierarchies"
view_hierarchies_json_files = [
f
for f in view_hierarchies_dir.iterdir()
if f.suffix == ".json" and not f.name.startswith("._")
]
view_hierarchies_jsons = []
for json_file in view_hierarchies_json_files:
json_dict = self._load_json(json_file)
if json_dict is None:
logger.warning(f"Invalid json file: {json_file}")
continue
children = self._flatten_children(
children=json_dict["activity"]["root"].pop("children")
)
json_dict["activity"]["children"] = [v for v in children.values()]
data = InteractionTracesData.from_dict(json_dict)
view_hierarchies_jsons.append(asdict(data))
gestures_json = trace_dir / "gestures.json"
with gestures_json.open("r") as rf:
gestures_dict = json.load(rf)
gestures = Gesture.from_dict_to_gestures(gestures_dict)
example = {
"screenshots": screenshots,
"view_hierarchies": view_hierarchies_jsons,
"gestures": [asdict(gesture) for gesture in gestures],
}
yield idx, example
idx += 1
class UiScreenshotsAndViewHierarchiesProcessor(InteractionTracesProcessor):
def get_features(self) -> ds.Features:
activity_class = self.get_activity_class_features_dict()
activity = {
"screenshot": ds.Image(),
**self.get_activity_features_dict(activity_class),
}
return ds.Features(activity)
def load_examples(self, base_dir: pathlib.Path) -> List[Any]:
task_dir = base_dir / "combined"
json_files = [f for f in task_dir.iterdir() if f.suffix == ".json"]
return json_files
def generate_examples(self, examples: List[pathlib.Path]):
for i, json_file in enumerate(examples):
with json_file.open("r") as rf:
json_dict = json.load(rf)
children = self._flatten_children(
children=json_dict["activity"]["root"].pop("children")
)
json_dict["activity"]["children"] = [v for v in children.values()]
json_dict["screenshot"] = self._load_image(
json_file.parent / f"{json_file.stem}.jpg"
)
data = UiScreenshotsAndViewHierarchiesData.from_dict(json_dict)
example = asdict(data)
yield i, example
class UiLayoutVectorsProcessor(RicoTaskProcessor):
def get_features(self) -> ds.Features:
return ds.Features(
{"vector": ds.Sequence(ds.Value("float32")), "name": ds.Value("string")}
)
def _load_ui_vectors(self, file_path: pathlib.Path) -> np.ndarray:
logger.debug(f"Load from {file_path}")
ui_vectors = np.load(file_path)
assert ui_vectors.shape[1] == 64
return ui_vectors
def _load_ui_names(self, file_path: pathlib.Path) -> List[str]:
with file_path.open("r") as rf:
json_dict = json.load(rf)
return json_dict["ui_names"]
def load_examples(self, base_dir: pathlib.Path) -> List[UiLayoutVectorSample]:
task_dir = base_dir / "ui_layout_vectors"
ui_vectors = self._load_ui_vectors(file_path=task_dir / "ui_vectors.npy")
ui_names = self._load_ui_names(file_path=task_dir / "ui_names.json")
assert len(ui_vectors) == len(ui_names)
return [
{"vector": vector, "name": name}
for vector, name in zip(ui_vectors, ui_names)
]
def generate_examples(self, examples: List[UiLayoutVectorSample]):
for i, sample in enumerate(examples):
sample["vector"] = sample["vector"].tolist()
yield i, sample
class AnimationsProcessor(RicoTaskProcessor):
def get_features(self) -> ds.Features:
raise NotImplementedError
def load_examples(self, base_dir: pathlib.Path) -> List[Any]:
raise NotImplementedError
def generate_examples(self, examples: List[Any]):
raise NotImplementedError
class UiScreenshotsAndHierarchiesWithSemanticAnnotationsProcessor(RicoTaskProcessor):
def get_features(self) -> ds.Features:
ui_component = {
"ancestors": ds.Sequence(ds.Value("string")),
"bounds": ds.Sequence(ds.Value("int64")),
"component_label": ds.ClassLabel(
num_classes=25,
names=[
"Text",
"Image",
"Icon",
"Text Button",
"List Item",
"Input",
"Background Image",
"Card",
"Web View",
"Radio Button",
"Drawer",
"Checkbox",
"Advertisement",
"Modal",
"Pager Indicator",
"Slider",
"On/Off Switch",
"Button Bar",
"Toolbar",
"Number Stepper",
"Multi-Tab",
"Date Picker",
"Map View",
"Video",
"Bottom Navigation",
],
),
"clickable": ds.Value("bool"),
"klass": ds.Value("string"),
"icon_class": ds.Value("string"),
"resource_id": ds.Value("string"),
}
return ds.Features(
{
"ancestors": ds.Sequence(ds.Value("string")),
"klass": ds.Value("string"),
"bounds": ds.Sequence(ds.Value("int64")),
"clickable": ds.Value("bool"),
"children": ds.Sequence(ds.Sequence(ui_component)),
"screenshot": ds.Image(),
}
)
def load_examples(self, base_dir: pathlib.Path) -> List[Any]:
task_dir = base_dir / "semantic_annotations"
json_files = [f for f in task_dir.iterdir() if f.suffix == ".json"]
return json_files
def generate_examples(self, examples: List[pathlib.Path]):
for i, json_file in enumerate(examples):
with json_file.open("r") as rf:
json_dict = json.load(rf)
children = self._flatten_children(children=json_dict.pop("children"))
json_dict["children"] = [v for v in children.values()]
json_dict["screenshot"] = self._load_image(
json_file.parent / f"{json_file.stem}.png"
)
data = UiScreenshotsAndHierarchiesWithSemanticAnnotationsData.from_dict(
json_dict
)
yield i, asdict(data)
class UiMetadataProcessor(RicoMetadataProcessor):
def get_features(self) -> ds.Features:
return ds.Features(
{
"ui_number": ds.Value("int32"),
"app_package_name": ds.Value("string"),
"interaction_trace_number": ds.Value("string"),
"ui_number_in_trace": ds.Value("string"),
}
)
def load_examples(self, csv_file: pathlib.Path) -> List[Any]:
df = pd.read_csv(csv_file) # 66261 col
df.columns = ["_".join(col.split()) for col in df.columns.str.lower()]
return df.to_dict(orient="records")
def split_generators(
self, csv_file: pathlib.Path, **kwargs
) -> List[ds.SplitGenerator]:
metadata = self.load_examples(csv_file)
return [ds.SplitGenerator(name="metadata", gen_kwargs={"examples": metadata})]
def generate_examples(self, examples: List[Any]):
for i, metadata in enumerate(examples):
yield i, metadata
class PlayStoreMetadataProcessor(RicoMetadataProcessor):
def get_features(self) -> ds.Features:
return ds.Features(
{
"app_package_name": ds.Value("string"),
"play_store_name": ds.Value("string"),
"category": ds.ClassLabel(
num_classes=27,
names=[
"Books & Reference",
"Comics",
"Health & Fitness",
"Social",
"Entertainment",
"Weather",
"Communication",
"Sports",
"News & Magazines",
"Finance",
"Shopping",
"Education",
"Travel & Local",
"Business",
"Medical",
"Beauty",
"Food & Drink",
"Dating",
"Auto & Vehicles",
"Music & Audio",
"House & Home",
"Maps & Navigation",
"Lifestyle",
"Art & Design",
"Parenting",
"Events",
"Video Players & Editors",
],
),
"average_rating": ds.Value("float32"),
"number_of_ratings": ds.Value("int32"),
"number_of_downloads": ds.ClassLabel(
num_classes=15,
names=[
"100,000 - 500,000",
"10,000 - 50,000",
"50,000,000 - 100,000,000",
"50,000 - 100,000",
"1,000,000 - 5,000,000",
"5,000,000 - 10,000,000",
"500,000 - 1,000,000",
"1,000 - 5,000",
"10,000,000 - 50,000,000",
"5,000 - 10,000",
"100,000,000 - 500,000,000",
"500,000,000 - 1,000,000,000",
"500 - 1,000",
"1,000,000,000 - 5,000,000,000",
"100 - 500",
],
),
"date_updated": ds.Value("string"),
"icon_url": ds.Value("string"),
}
)
def cleanup_metadata(self, df: pd.DataFrame) -> pd.DataFrame:
df = df.assign(
number_of_downloads=df["number_of_downloads"].str.strip(),
number_of_ratings=df["number_of_ratings"]
.str.replace('"', "")
.str.strip()
.astype(int),
)
def remove_noisy_data(df: pd.DataFrame) -> pd.DataFrame:
old_num = len(df)
df = df[
(df["category"] != "000 - 1")
| (df["number_of_downloads"] != "January 10, 2015")
]
new_num = len(df)
assert new_num == old_num - 1
return df
df = remove_noisy_data(df)
return df
def load_examples(self, csv_file: pathlib.Path) -> List[Any]:
df = pd.read_csv(csv_file)
df.columns = ["_".join(col.split()) for col in df.columns.str.lower()]
df = self.cleanup_metadata(df)
return df.to_dict(orient="records")
def split_generators(
self, csv_file: pathlib.Path, **kwargs
) -> List[ds.SplitGenerator]:
metadata = self.load_examples(csv_file)
return [ds.SplitGenerator(name="metadata", gen_kwargs={"examples": metadata})]
def generate_examples(self, examples: List[Any]):
for i, metadata in enumerate(examples):
yield i, metadata
@dataclass
class RicoConfig(ds.BuilderConfig):
train_ratio: float = 0.85
validation_ratio: float = 0.05
test_ratio: float = 0.10
random_state: int = 0
data_url: Optional[str] = None
processor: Optional[RicoProcessor] = None
def __post_init__(self):
assert self.data_url is not None
assert self.processor is not None
assert self.train_ratio + self.validation_ratio + self.test_ratio == 1.0
class RicoDataset(ds.GeneratorBasedBuilder):
VERSION = ds.Version("1.0.0")
BUILDER_CONFIGS = [
RicoConfig(
name="ui-screenshots-and-view-hierarchies",
version=VERSION,
description="Contains 66k+ unique UI screens",
data_url="https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/unique_uis.tar.gz",
processor=UiScreenshotsAndViewHierarchiesProcessor(),
),
RicoConfig(
name="ui-layout-vectors",
version=VERSION,
description="Contains 64-dimensional vector representations for each UI screen that encode layout based on the distribution of text and images.",
data_url="https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/ui_layout_vectors.zip",
processor=UiLayoutVectorsProcessor(),
),
RicoConfig(
name="interaction-traces",
version=VERSION,
description="Contains user interaction traces organized by app.",
data_url="https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/traces.tar.gz",
processor=InteractionTracesProcessor(),
),
RicoConfig(
name="animations",
version=VERSION,
description="Contains GIFs that demonstrate how screens animated in response to a user interaction; follows the same folder structure introduced for interaction traces.",
data_url="https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/animations.tar.gz",
processor=AnimationsProcessor(),
),
RicoConfig(
name="ui-screenshots-and-hierarchies-with-semantic-annotations",
version=VERSION,
description="Contains 66k+ UI screens and hierarchies augmented with semantic annotations that describe what elements on the screen mean and how they are used.",
data_url="https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/semantic_annotations.zip",
processor=UiScreenshotsAndHierarchiesWithSemanticAnnotationsProcessor(),
),
RicoConfig(
name="ui-metadata",
version=VERSION,
description="Contains metadata about each UI screen: the name of the app it came from, the user interaction trace within that app.",
data_url="https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/ui_details.csv",
processor=UiMetadataProcessor(),
),
RicoConfig(
name="play-store-metadata",
version=VERSION,
description="Contains metadata about the apps in the dataset including an app’s category, average rating, number of ratings, and number of downloads.",
data_url="https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/app_details.csv",
processor=PlayStoreMetadataProcessor(),
),
]
def _info(self) -> ds.DatasetInfo:
processor: RicoProcessor = self.config.processor
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=processor.get_features(),
)
def _split_generators(self, dl_manager: ds.DownloadManager):
config: RicoConfig = self.config
assert config.processor is not None
processor: RicoProcessor = config.processor
return processor.split_generators(
dl_manager.download_and_extract(self.config.data_url),
train_ratio=config.train_ratio,
validation_ratio=config.validation_ratio,
test_ratio=config.test_ratio,
)
def _generate_examples(self, **kwargs):
config: RicoConfig = self.config
assert config.processor is not None
processor: RicoProcessor = config.processor
yield from processor.generate_examples(**kwargs)
|