Datasets:

Tasks:
Other
Languages:
Chinese
ArXiv:
License:
PKU-PosterLayout / PKU-PosterLayout.py
shunk031's picture
Initialize (#1)
f689054 unverified
raw
history blame
10.6 kB
import os
import pathlib
from typing import List, TypedDict, Union, cast
import datasets as ds
from datasets.utils.logging import get_logger
from PIL import Image
from PIL.Image import Image as PilImage
logger = get_logger(__name__)
_DESCRIPTION = (
"A New Dataset and Benchmark for Content-aware Visual-Textual Presentation Layout"
)
_CITATION = """\
@inproceedings{hsu2023posterlayout,
title={PosterLayout: A New Benchmark and Approach for Content-aware Visual-Textual Presentation Layout},
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={6018--6026},
year={2023}
}
"""
_HOMEPAGE = "http://59.108.48.34/tiki/PosterLayout/"
_LICENSE = "Images in PKU PosterLayout are distributed under the CC BY-SA 4.0 license."
class TrainPoster(TypedDict):
original: str
inpainted: str
class TestPoster(TypedDict):
canvas: str
class SaliencyMaps(TypedDict):
pfpn: str
basnet: str
class TrainDataset(TypedDict):
poster: TrainPoster
saliency_maps: SaliencyMaps
class TestDataset(TypedDict):
poster: TestPoster
saliency_maps: SaliencyMaps
class DatasetUrls(TypedDict):
train: TrainDataset
test: TestDataset
# The author of this loading script has uploaded the poster image and saliency maps to the HuggingFace's private repository to facilitate testing.
# If you are using this loading script, please download the annotations from the appropriate channels, such as the OneDrive link provided by the Magazine dataset's author.
# (To the author of Magazine dataset, if there are any issues regarding this matter, please contact us. We will address it promptly.)
_URLS: DatasetUrls = {
"train": {
"poster": {
"original": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/train/original_poster.zip",
"inpainted": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/train/inpainted_poster.zip",
},
"saliency_maps": {
"pfpn": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/train/saliencymaps_pfpn.zip",
"basnet": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/train/saliencymaps_basnet.zip",
},
},
"test": {
"poster": {
"canvas": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/test/image_canvas.zip",
},
"saliency_maps": {
"pfpn": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/test/saliencymaps_pfpn.zip",
"basnet": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/test/saliencymaps_basnet.zip",
},
},
}
def file_sorter(f: pathlib.Path) -> int:
idx, *_ = f.stem.split("_")
return int(idx)
def load_image(file_path: pathlib.Path) -> PilImage:
logger.info(f"Load from {file_path}")
return Image.open(file_path)
def get_original_poster_files(base_dir: str) -> List[pathlib.Path]:
poster_dir = pathlib.Path(base_dir) / "original_poster"
return sorted(poster_dir.iterdir(), key=lambda f: int(f.stem))
def get_inpainted_poster_files(base_dir: str) -> List[pathlib.Path]:
inpainted_dir = pathlib.Path(base_dir) / "inpainted_poster"
return sorted(inpainted_dir.iterdir(), key=file_sorter)
def get_basnet_map_files(base_dir: str) -> List[pathlib.Path]:
basnet_map_dir = pathlib.Path(base_dir) / "saliencymaps_basnet"
return sorted(basnet_map_dir.iterdir(), key=file_sorter)
def get_pfpn_map_files(base_dir: str) -> List[pathlib.Path]:
pfpn_map_dir = pathlib.Path(base_dir) / "saliencymaps_pfpn"
return sorted(pfpn_map_dir.iterdir(), key=file_sorter)
def get_canvas_files(base_dir: str) -> List[pathlib.Path]:
canvas_dir = pathlib.Path(base_dir) / "image_canvas"
return sorted(canvas_dir.iterdir(), key=lambda f: int(f.stem))
class PosterLayoutDataset(ds.GeneratorBasedBuilder):
VERSION = ds.Version("1.0.0")
BUILDER_CONFIGS = [ds.BuilderConfig(version=VERSION)]
def _info(self) -> ds.DatasetInfo:
features = ds.Features(
{
"original_poster": ds.Image(),
"inpainted_poster": ds.Image(),
"basnet_saliency_map": ds.Image(),
"pfpn_saliency_map": ds.Image(),
"canvas": ds.Image(),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
@property
def _manual_download_instructions(self) -> str:
return (
"To use PKU-PosterLayout dataset, you need to download the poster image "
"and saliency maps via [PKU Netdisk](https://disk.pku.edu.cn/link/999C6E97BB354DF8AD0F9E1F9003BE05) "
"or [Google Drive](https://drive.google.com/drive/folders/1Gk202RVs9Qy2zbJUNeurC1CaQYNU-Vuv?usp=share_link)."
)
def _download_from_hf(self, dl_manager: ds.DownloadManager) -> DatasetUrls:
return dl_manager.download_and_extract(_URLS)
def _download_from_local(self, dl_manager: ds.DownloadManager) -> DatasetUrls:
assert dl_manager.manual_dir is not None, dl_manager.manual_dir
dir_path = os.path.expanduser(dl_manager.manual_dir)
tng_dir_path = os.path.join(dir_path, "train")
tst_dir_path = os.path.join(dir_path, "test")
if not os.path.exists(dir_path):
raise FileNotFoundError(
"Make sure you have downloaded and placed the PKU-PosterLayout dataset correctly. "
'Furthermore, you shoud check that a manual dir via `datasets.load_dataset("shunk031/PKU-PosterLayout", data_dir=...)` '
"that include zip files from the downloaded files. "
f"Manual downloaded instructions: {self._manual_download_instructions}"
)
return dl_manager.extract(
path_or_paths={
"train": {
"poster": {
"original": os.path.join(tng_dir_path, "inpainted_poster.zip"),
"inpainted": os.path.join(tng_dir_path, "inpainted_poster.zip"),
},
"saliency_maps": {
"pfpn": os.path.join(tng_dir_path, "saliencymaps_pfpn.zip"),
"basnet": os.path.join(tng_dir_path, "saliencymaps_basnet.zip"),
},
},
"test": {
"poster": {
"canvas": os.path.join(tst_dir_path, "image_canvas.zip"),
},
"saliency_maps": {
"pfpn": os.path.join(tst_dir_path, "salieycmaps_pfpn.zip"),
"basnet": os.path.join(tst_dir_path, "saliencymaps_basnet.zip"),
},
},
}
)
def _split_generators(self, dl_manager: ds.DownloadManager):
file_paths = (
self._download_from_hf(dl_manager)
if dl_manager.download_config.token
else self._download_from_local(dl_manager)
)
tng_files = file_paths["train"]
tst_files = file_paths["test"]
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={
"poster": tng_files["poster"],
"saliency_maps": tng_files["saliency_maps"],
},
),
ds.SplitGenerator(
name=ds.Split.TEST,
gen_kwargs={
"poster": tst_files["poster"],
"saliency_maps": tst_files["saliency_maps"],
},
),
]
def _generate_train_examples(
self, poster: TrainPoster, saliency_maps: SaliencyMaps
):
poster_files = get_original_poster_files(base_dir=poster["original"])
inpainted_files = get_inpainted_poster_files(base_dir=poster["inpainted"])
basnet_map_files = get_basnet_map_files(base_dir=saliency_maps["basnet"])
pfpn_map_files = get_pfpn_map_files(base_dir=saliency_maps["pfpn"])
assert (
len(poster_files)
== len(inpainted_files)
== len(basnet_map_files)
== len(pfpn_map_files)
)
it = zip(poster_files, inpainted_files, basnet_map_files, pfpn_map_files)
for i, (
original_poster_path,
inpainted_poster_path,
basnet_map_path,
pfpn_map_path,
) in enumerate(it):
yield i, {
"original_poster": load_image(original_poster_path),
"inpainted_poster": load_image(inpainted_poster_path),
"basnet_saliency_map": load_image(basnet_map_path),
"pfpn_saliency_map": load_image(pfpn_map_path),
"canvas": None,
}
def _generate_test_examples(self, poster: TestPoster, saliency_maps: SaliencyMaps):
canvas_files = get_canvas_files(base_dir=poster["canvas"])
basnet_map_files = get_basnet_map_files(base_dir=saliency_maps["basnet"])
pfpn_map_files = get_pfpn_map_files(base_dir=saliency_maps["pfpn"])
assert len(canvas_files) == len(basnet_map_files) == len(pfpn_map_files)
it = zip(canvas_files, basnet_map_files, pfpn_map_files)
for i, (canvas_path, basnet_map_path, pfpn_map_path) in enumerate(it):
yield i, {
"original_poster": None,
"inpainted_poster": None,
"basnet_saliency_map": load_image(basnet_map_path),
"pfpn_saliency_map": load_image(pfpn_map_path),
"canvas": load_image(canvas_path),
}
def _generate_examples(
self, poster: Union[TrainPoster, TestPoster], saliency_maps: SaliencyMaps
):
if "original" in poster and "inpainted" in poster:
yield from self._generate_train_examples(
poster=cast(TrainPoster, poster), saliency_maps=saliency_maps
)
elif "canvas" in poster:
yield from self._generate_test_examples(
poster=cast(TestPoster, poster), saliency_maps=saliency_maps
)
else:
raise ValueError("Invalid dataset")