File size: 5,862 Bytes
f689054 6b3fa2d f689054 203d438 f689054 6b3fa2d 8ec1e67 af3a6fd 8ec1e67 6b3fa2d af3a6fd 6b3fa2d 8ec1e67 6b3fa2d af3a6fd f689054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- zh
license:
- cc-by-sa-4.0
multilinguality: []
size_categories: []
source_datasets:
- extended|PosterErase
task_categories:
- other
task_ids: []
pretty_name: PKU-PosterLayout
tags:
- layout-generation
- graphic design
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
dataset_info:
features:
- name: original_poster
dtype: image
- name: inpainted_poster
dtype: image
- name: basnet_saliency_map
dtype: image
- name: pfpn_saliency_map
dtype: image
- name: canvas
dtype: image
- name: annotations
sequence:
- name: poster_path
dtype: string
- name: total_elem
dtype: int32
- name: cls_elem
dtype:
class_label:
names:
'0': text
'1': logo
'2': underlay
'3': INVALID
- name: box_elem
sequence: int32
splits:
- name: train
num_bytes: 7146183585.374
num_examples: 9974
- name: test
num_bytes: 366746518.0
num_examples: 905
download_size: 7351214285
dataset_size: 7512930103.374
---
# Dataset Card for PKU-PosterLayout
[![CI](https://github.com/shunk031/huggingface-datasets_PKU-PosterLayout/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_PKU-PosterLayout/actions/workflows/ci.yaml)
## Table of Contents
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://59.108.48.34/tiki/PosterLayout/
- **Repository:** https://github.com/shunk031/huggingface-datasets_PKU-PosterLayout
- **Paper (Preprint):** https://arxiv.org/abs/2303.15937
- **Paper (CVPR2023):** https://openaccess.thecvf.com/content/CVPR2023/html/Hsu_PosterLayout_A_New_Benchmark_and_Approach_for_Content-Aware_Visual-Textual_Presentation_CVPR_2023_paper.html
### Dataset Summary
PKU-PosterLayout is a new dataset and benchmark for content-aware visual-textual presentation layout.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The language data in PKU-PosterLayout is in Chinese ([BCP-47 zh](https://www.rfc-editor.org/info/bcp47)).
## Dataset Structure
### Data Instances
To use PKU-PosterLayout dataset, you need to download the poster image and saliency maps via [PKU Netdisk](https://disk.pku.edu.cn/link/999C6E97BB354DF8AD0F9E1F9003BE05) or [Google Drive](https://drive.google.com/drive/folders/1Gk202RVs9Qy2zbJUNeurC1CaQYNU-Vuv?usp=share_link).
```
/path/to/datasets
βββ train
β βββ inpainted_poster.zip
β βββ original_poster.zip
β βββ saliencymaps_basnet.zip
β βββ saliencymaps_pfpn.zip
βββ test
βββ image_canvas.zip
βββ saliencymaps_basnet.zip
βββ saliencymaps_pfpn.zip
```
```python
import datasets as ds
dataset = ds.load_dataset(
path="shunk031/PKU-PosterLayout",
data_dir="/path/to/datasets/",
)
```
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```bibtex
@inproceedings{hsu2023posterlayout,
title={PosterLayout: A New Benchmark and Approach for Content-aware Visual-Textual Presentation Layout},
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={6018--6026},
year={2023}
}
```
### Contributions
Thanks to [@PKU-ICST-MIPL](https://github.com/PKU-ICST-MIPL) for creating this dataset.
|