File size: 10,589 Bytes
f689054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import pathlib
from typing import List, TypedDict, Union, cast
import datasets as ds
from datasets.utils.logging import get_logger
from PIL import Image
from PIL.Image import Image as PilImage
logger = get_logger(__name__)
_DESCRIPTION = (
"A New Dataset and Benchmark for Content-aware Visual-Textual Presentation Layout"
)
_CITATION = """\
@inproceedings{hsu2023posterlayout,
title={PosterLayout: A New Benchmark and Approach for Content-aware Visual-Textual Presentation Layout},
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={6018--6026},
year={2023}
}
"""
_HOMEPAGE = "http://59.108.48.34/tiki/PosterLayout/"
_LICENSE = "Images in PKU PosterLayout are distributed under the CC BY-SA 4.0 license."
class TrainPoster(TypedDict):
original: str
inpainted: str
class TestPoster(TypedDict):
canvas: str
class SaliencyMaps(TypedDict):
pfpn: str
basnet: str
class TrainDataset(TypedDict):
poster: TrainPoster
saliency_maps: SaliencyMaps
class TestDataset(TypedDict):
poster: TestPoster
saliency_maps: SaliencyMaps
class DatasetUrls(TypedDict):
train: TrainDataset
test: TestDataset
# The author of this loading script has uploaded the poster image and saliency maps to the HuggingFace's private repository to facilitate testing.
# If you are using this loading script, please download the annotations from the appropriate channels, such as the OneDrive link provided by the Magazine dataset's author.
# (To the author of Magazine dataset, if there are any issues regarding this matter, please contact us. We will address it promptly.)
_URLS: DatasetUrls = {
"train": {
"poster": {
"original": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/train/original_poster.zip",
"inpainted": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/train/inpainted_poster.zip",
},
"saliency_maps": {
"pfpn": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/train/saliencymaps_pfpn.zip",
"basnet": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/train/saliencymaps_basnet.zip",
},
},
"test": {
"poster": {
"canvas": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/test/image_canvas.zip",
},
"saliency_maps": {
"pfpn": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/test/saliencymaps_pfpn.zip",
"basnet": "https://huggingface.co./datasets/shunk031/PKU-PosterLayout-private/resolve/main/test/saliencymaps_basnet.zip",
},
},
}
def file_sorter(f: pathlib.Path) -> int:
idx, *_ = f.stem.split("_")
return int(idx)
def load_image(file_path: pathlib.Path) -> PilImage:
logger.info(f"Load from {file_path}")
return Image.open(file_path)
def get_original_poster_files(base_dir: str) -> List[pathlib.Path]:
poster_dir = pathlib.Path(base_dir) / "original_poster"
return sorted(poster_dir.iterdir(), key=lambda f: int(f.stem))
def get_inpainted_poster_files(base_dir: str) -> List[pathlib.Path]:
inpainted_dir = pathlib.Path(base_dir) / "inpainted_poster"
return sorted(inpainted_dir.iterdir(), key=file_sorter)
def get_basnet_map_files(base_dir: str) -> List[pathlib.Path]:
basnet_map_dir = pathlib.Path(base_dir) / "saliencymaps_basnet"
return sorted(basnet_map_dir.iterdir(), key=file_sorter)
def get_pfpn_map_files(base_dir: str) -> List[pathlib.Path]:
pfpn_map_dir = pathlib.Path(base_dir) / "saliencymaps_pfpn"
return sorted(pfpn_map_dir.iterdir(), key=file_sorter)
def get_canvas_files(base_dir: str) -> List[pathlib.Path]:
canvas_dir = pathlib.Path(base_dir) / "image_canvas"
return sorted(canvas_dir.iterdir(), key=lambda f: int(f.stem))
class PosterLayoutDataset(ds.GeneratorBasedBuilder):
VERSION = ds.Version("1.0.0")
BUILDER_CONFIGS = [ds.BuilderConfig(version=VERSION)]
def _info(self) -> ds.DatasetInfo:
features = ds.Features(
{
"original_poster": ds.Image(),
"inpainted_poster": ds.Image(),
"basnet_saliency_map": ds.Image(),
"pfpn_saliency_map": ds.Image(),
"canvas": ds.Image(),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
@property
def _manual_download_instructions(self) -> str:
return (
"To use PKU-PosterLayout dataset, you need to download the poster image "
"and saliency maps via [PKU Netdisk](https://disk.pku.edu.cn/link/999C6E97BB354DF8AD0F9E1F9003BE05) "
"or [Google Drive](https://drive.google.com/drive/folders/1Gk202RVs9Qy2zbJUNeurC1CaQYNU-Vuv?usp=share_link)."
)
def _download_from_hf(self, dl_manager: ds.DownloadManager) -> DatasetUrls:
return dl_manager.download_and_extract(_URLS)
def _download_from_local(self, dl_manager: ds.DownloadManager) -> DatasetUrls:
assert dl_manager.manual_dir is not None, dl_manager.manual_dir
dir_path = os.path.expanduser(dl_manager.manual_dir)
tng_dir_path = os.path.join(dir_path, "train")
tst_dir_path = os.path.join(dir_path, "test")
if not os.path.exists(dir_path):
raise FileNotFoundError(
"Make sure you have downloaded and placed the PKU-PosterLayout dataset correctly. "
'Furthermore, you shoud check that a manual dir via `datasets.load_dataset("shunk031/PKU-PosterLayout", data_dir=...)` '
"that include zip files from the downloaded files. "
f"Manual downloaded instructions: {self._manual_download_instructions}"
)
return dl_manager.extract(
path_or_paths={
"train": {
"poster": {
"original": os.path.join(tng_dir_path, "inpainted_poster.zip"),
"inpainted": os.path.join(tng_dir_path, "inpainted_poster.zip"),
},
"saliency_maps": {
"pfpn": os.path.join(tng_dir_path, "saliencymaps_pfpn.zip"),
"basnet": os.path.join(tng_dir_path, "saliencymaps_basnet.zip"),
},
},
"test": {
"poster": {
"canvas": os.path.join(tst_dir_path, "image_canvas.zip"),
},
"saliency_maps": {
"pfpn": os.path.join(tst_dir_path, "salieycmaps_pfpn.zip"),
"basnet": os.path.join(tst_dir_path, "saliencymaps_basnet.zip"),
},
},
}
)
def _split_generators(self, dl_manager: ds.DownloadManager):
file_paths = (
self._download_from_hf(dl_manager)
if dl_manager.download_config.token
else self._download_from_local(dl_manager)
)
tng_files = file_paths["train"]
tst_files = file_paths["test"]
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={
"poster": tng_files["poster"],
"saliency_maps": tng_files["saliency_maps"],
},
),
ds.SplitGenerator(
name=ds.Split.TEST,
gen_kwargs={
"poster": tst_files["poster"],
"saliency_maps": tst_files["saliency_maps"],
},
),
]
def _generate_train_examples(
self, poster: TrainPoster, saliency_maps: SaliencyMaps
):
poster_files = get_original_poster_files(base_dir=poster["original"])
inpainted_files = get_inpainted_poster_files(base_dir=poster["inpainted"])
basnet_map_files = get_basnet_map_files(base_dir=saliency_maps["basnet"])
pfpn_map_files = get_pfpn_map_files(base_dir=saliency_maps["pfpn"])
assert (
len(poster_files)
== len(inpainted_files)
== len(basnet_map_files)
== len(pfpn_map_files)
)
it = zip(poster_files, inpainted_files, basnet_map_files, pfpn_map_files)
for i, (
original_poster_path,
inpainted_poster_path,
basnet_map_path,
pfpn_map_path,
) in enumerate(it):
yield i, {
"original_poster": load_image(original_poster_path),
"inpainted_poster": load_image(inpainted_poster_path),
"basnet_saliency_map": load_image(basnet_map_path),
"pfpn_saliency_map": load_image(pfpn_map_path),
"canvas": None,
}
def _generate_test_examples(self, poster: TestPoster, saliency_maps: SaliencyMaps):
canvas_files = get_canvas_files(base_dir=poster["canvas"])
basnet_map_files = get_basnet_map_files(base_dir=saliency_maps["basnet"])
pfpn_map_files = get_pfpn_map_files(base_dir=saliency_maps["pfpn"])
assert len(canvas_files) == len(basnet_map_files) == len(pfpn_map_files)
it = zip(canvas_files, basnet_map_files, pfpn_map_files)
for i, (canvas_path, basnet_map_path, pfpn_map_path) in enumerate(it):
yield i, {
"original_poster": None,
"inpainted_poster": None,
"basnet_saliency_map": load_image(basnet_map_path),
"pfpn_saliency_map": load_image(pfpn_map_path),
"canvas": load_image(canvas_path),
}
def _generate_examples(
self, poster: Union[TrainPoster, TestPoster], saliency_maps: SaliencyMaps
):
if "original" in poster and "inpainted" in poster:
yield from self._generate_train_examples(
poster=cast(TrainPoster, poster), saliency_maps=saliency_maps
)
elif "canvas" in poster:
yield from self._generate_test_examples(
poster=cast(TestPoster, poster), saliency_maps=saliency_maps
)
else:
raise ValueError("Invalid dataset")
|