ggbetz commited on
Commit
577c5c9
1 Parent(s): 9c3ec4e

Upload results for model Qwen/Qwen2-7B-Instruct

Browse files
data/Qwen/Qwen2-7B-Instruct/orig/results_24-09-25-21:07:14/Qwen__Qwen2-7B-Instruct/results_2024-09-25T21-20-00.107080.json ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "logiqa2_base": {
4
+ "alias": "logiqa2_base",
5
+ "acc,none": 0.40458015267175573,
6
+ "acc_stderr,none": 0.012382999288486022
7
+ },
8
+ "logiqa_base": {
9
+ "alias": "logiqa_base",
10
+ "acc,none": 0.3194888178913738,
11
+ "acc_stderr,none": 0.01865114315568868
12
+ },
13
+ "lsat-ar_base": {
14
+ "alias": "lsat-ar_base",
15
+ "acc,none": 0.24347826086956523,
16
+ "acc_stderr,none": 0.02836109930007507
17
+ },
18
+ "lsat-lr_base": {
19
+ "alias": "lsat-lr_base",
20
+ "acc,none": 0.3627450980392157,
21
+ "acc_stderr,none": 0.02131073739378042
22
+ },
23
+ "lsat-rc_base": {
24
+ "alias": "lsat-rc_base",
25
+ "acc,none": 0.5055762081784386,
26
+ "acc_stderr,none": 0.030540461655697047
27
+ }
28
+ },
29
+ "group_subtasks": {
30
+ "logiqa2_base": [],
31
+ "logiqa_base": [],
32
+ "lsat-ar_base": [],
33
+ "lsat-lr_base": [],
34
+ "lsat-rc_base": []
35
+ },
36
+ "configs": {
37
+ "logiqa2_base": {
38
+ "task": "logiqa2_base",
39
+ "tag": "logikon-bench",
40
+ "group": "logikon-bench",
41
+ "dataset_path": "logikon/logikon-bench",
42
+ "dataset_name": "logiqa2",
43
+ "test_split": "test",
44
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
45
+ "doc_to_target": "{{answer}}",
46
+ "doc_to_choice": "{{options}}",
47
+ "description": "",
48
+ "target_delimiter": " ",
49
+ "fewshot_delimiter": "\n\n",
50
+ "num_fewshot": 0,
51
+ "metric_list": [
52
+ {
53
+ "metric": "acc",
54
+ "aggregation": "mean",
55
+ "higher_is_better": true
56
+ }
57
+ ],
58
+ "output_type": "multiple_choice",
59
+ "repeats": 1,
60
+ "should_decontaminate": false,
61
+ "metadata": {
62
+ "version": 0.0
63
+ }
64
+ },
65
+ "logiqa_base": {
66
+ "task": "logiqa_base",
67
+ "tag": "logikon-bench",
68
+ "group": "logikon-bench",
69
+ "dataset_path": "logikon/logikon-bench",
70
+ "dataset_name": "logiqa",
71
+ "test_split": "test",
72
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
73
+ "doc_to_target": "{{answer}}",
74
+ "doc_to_choice": "{{options}}",
75
+ "description": "",
76
+ "target_delimiter": " ",
77
+ "fewshot_delimiter": "\n\n",
78
+ "num_fewshot": 0,
79
+ "metric_list": [
80
+ {
81
+ "metric": "acc",
82
+ "aggregation": "mean",
83
+ "higher_is_better": true
84
+ }
85
+ ],
86
+ "output_type": "multiple_choice",
87
+ "repeats": 1,
88
+ "should_decontaminate": false,
89
+ "metadata": {
90
+ "version": 0.0
91
+ }
92
+ },
93
+ "lsat-ar_base": {
94
+ "task": "lsat-ar_base",
95
+ "tag": "logikon-bench",
96
+ "group": "logikon-bench",
97
+ "dataset_path": "logikon/logikon-bench",
98
+ "dataset_name": "lsat-ar",
99
+ "test_split": "test",
100
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
101
+ "doc_to_target": "{{answer}}",
102
+ "doc_to_choice": "{{options}}",
103
+ "description": "",
104
+ "target_delimiter": " ",
105
+ "fewshot_delimiter": "\n\n",
106
+ "num_fewshot": 0,
107
+ "metric_list": [
108
+ {
109
+ "metric": "acc",
110
+ "aggregation": "mean",
111
+ "higher_is_better": true
112
+ }
113
+ ],
114
+ "output_type": "multiple_choice",
115
+ "repeats": 1,
116
+ "should_decontaminate": false,
117
+ "metadata": {
118
+ "version": 0.0
119
+ }
120
+ },
121
+ "lsat-lr_base": {
122
+ "task": "lsat-lr_base",
123
+ "tag": "logikon-bench",
124
+ "group": "logikon-bench",
125
+ "dataset_path": "logikon/logikon-bench",
126
+ "dataset_name": "lsat-lr",
127
+ "test_split": "test",
128
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
129
+ "doc_to_target": "{{answer}}",
130
+ "doc_to_choice": "{{options}}",
131
+ "description": "",
132
+ "target_delimiter": " ",
133
+ "fewshot_delimiter": "\n\n",
134
+ "num_fewshot": 0,
135
+ "metric_list": [
136
+ {
137
+ "metric": "acc",
138
+ "aggregation": "mean",
139
+ "higher_is_better": true
140
+ }
141
+ ],
142
+ "output_type": "multiple_choice",
143
+ "repeats": 1,
144
+ "should_decontaminate": false,
145
+ "metadata": {
146
+ "version": 0.0
147
+ }
148
+ },
149
+ "lsat-rc_base": {
150
+ "task": "lsat-rc_base",
151
+ "tag": "logikon-bench",
152
+ "group": "logikon-bench",
153
+ "dataset_path": "logikon/logikon-bench",
154
+ "dataset_name": "lsat-rc",
155
+ "test_split": "test",
156
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
157
+ "doc_to_target": "{{answer}}",
158
+ "doc_to_choice": "{{options}}",
159
+ "description": "",
160
+ "target_delimiter": " ",
161
+ "fewshot_delimiter": "\n\n",
162
+ "num_fewshot": 0,
163
+ "metric_list": [
164
+ {
165
+ "metric": "acc",
166
+ "aggregation": "mean",
167
+ "higher_is_better": true
168
+ }
169
+ ],
170
+ "output_type": "multiple_choice",
171
+ "repeats": 1,
172
+ "should_decontaminate": false,
173
+ "metadata": {
174
+ "version": 0.0
175
+ }
176
+ }
177
+ },
178
+ "versions": {
179
+ "logiqa2_base": 0.0,
180
+ "logiqa_base": 0.0,
181
+ "lsat-ar_base": 0.0,
182
+ "lsat-lr_base": 0.0,
183
+ "lsat-rc_base": 0.0
184
+ },
185
+ "n-shot": {
186
+ "logiqa2_base": 0,
187
+ "logiqa_base": 0,
188
+ "lsat-ar_base": 0,
189
+ "lsat-lr_base": 0,
190
+ "lsat-rc_base": 0
191
+ },
192
+ "higher_is_better": {
193
+ "logiqa2_base": {
194
+ "acc": true
195
+ },
196
+ "logiqa_base": {
197
+ "acc": true
198
+ },
199
+ "lsat-ar_base": {
200
+ "acc": true
201
+ },
202
+ "lsat-lr_base": {
203
+ "acc": true
204
+ },
205
+ "lsat-rc_base": {
206
+ "acc": true
207
+ }
208
+ },
209
+ "n-samples": {
210
+ "lsat-rc_base": {
211
+ "original": 269,
212
+ "effective": 269
213
+ },
214
+ "lsat-lr_base": {
215
+ "original": 510,
216
+ "effective": 510
217
+ },
218
+ "lsat-ar_base": {
219
+ "original": 230,
220
+ "effective": 230
221
+ },
222
+ "logiqa_base": {
223
+ "original": 626,
224
+ "effective": 626
225
+ },
226
+ "logiqa2_base": {
227
+ "original": 1572,
228
+ "effective": 1572
229
+ }
230
+ },
231
+ "config": {
232
+ "model": "local-completions",
233
+ "model_args": "base_url=http://localhost:8000/v1/completions,num_concurrent=1,max_retries=3,tokenized_requests=False,model=Qwen/Qwen2-7B-Instruct",
234
+ "batch_size": "1",
235
+ "batch_sizes": [],
236
+ "device": null,
237
+ "use_cache": null,
238
+ "limit": null,
239
+ "bootstrap_iters": 100000,
240
+ "gen_kwargs": null,
241
+ "random_seed": 0,
242
+ "numpy_seed": 1234,
243
+ "torch_seed": 1234,
244
+ "fewshot_seed": 1234
245
+ },
246
+ "git_hash": "fc673dc",
247
+ "date": 1727291241.242517,
248
+ "pretty_env_info": "PyTorch version: 2.4.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Red Hat Enterprise Linux release 8.8 (Ootpa) (x86_64)\nGCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18)\nClang version: Could not collect\nCMake version: version 3.20.2\nLibc version: glibc-2.28\n\nPython version: 3.11.2 (main, May 20 2024, 08:58:58) [GCC 8.5.0 20210514 (Red Hat 8.5.0-18)] (64-bit runtime)\nPython platform: Linux-4.18.0-477.70.1.el8_8.x86_64-x86_64-with-glibc2.28\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB\nNvidia driver version: 550.54.15\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitektur: x86_64\nCPU Operationsmodus: 32-bit, 64-bit\nByte-Reihenfolge: Little Endian\nCPU(s): 152\nListe der Online-CPU(s): 0-151\nThread(s) pro Kern: 2\nKern(e) pro Socket: 38\nSockel: 2\nNUMA-Knoten: 2\nAnbieterkennung: GenuineIntel\nProzessorfamilie: 6\nModell: 106\nModellname: Intel(R) Xeon(R) Platinum 8368 CPU @ 2.40GHz\nStepping: 6\nCPU MHz: 2400.000\nMaximale Taktfrequenz der CPU: 3400,0000\nMinimale Taktfrequenz der CPU: 800,0000\nBogoMIPS: 4800.00\nVirtualisierung: VT-x\nL1d Cache: 48K\nL1i Cache: 32K\nL2 Cache: 1280K\nL3 Cache: 58368K\nNUMA-Knoten0 CPU(s): 0-37,76-113\nNUMA-Knoten1 CPU(s): 38-75,114-151\nMarkierungen: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.4.1\n[pip3] triton==3.0.0\n[conda] Could not collect",
249
+ "transformers_version": "4.44.2",
250
+ "upper_git_hash": null,
251
+ "tokenizer_pad_token": [
252
+ "<|endoftext|>",
253
+ "151643"
254
+ ],
255
+ "tokenizer_eos_token": [
256
+ "<|im_end|>",
257
+ "151645"
258
+ ],
259
+ "tokenizer_bos_token": [
260
+ null,
261
+ "None"
262
+ ],
263
+ "eot_token_id": 151645,
264
+ "max_length": 2047,
265
+ "task_hashes": {},
266
+ "model_source": "local-completions",
267
+ "model_name": "Qwen/Qwen2-7B-Instruct",
268
+ "model_name_sanitized": "Qwen__Qwen2-7B-Instruct",
269
+ "system_instruction": null,
270
+ "system_instruction_sha": null,
271
+ "fewshot_as_multiturn": false,
272
+ "chat_template": null,
273
+ "chat_template_sha": null,
274
+ "start_time": 102941.650681047,
275
+ "end_time": 103705.114421533,
276
+ "total_evaluation_time_seconds": "763.4637404859968"
277
+ }