cot-eval-results / data /Deci /DeciLM-7B /base /24-02-03-00:47:02.json
ggbetz's picture
Upload results for model Deci/DeciLM-7B (#5)
d792823 verified
raw
history blame
55.9 kB
{
"results": {
"veritatis-velit_lsat-rc_base": {
"acc,none": 0.37174721189591076,
"acc_stderr,none": 0.029520497706913982,
"alias": "veritatis-velit_lsat-rc_base"
},
"veritatis-velit_lsat-lr_base": {
"acc,none": 0.25098039215686274,
"acc_stderr,none": 0.0192179738903761,
"alias": "veritatis-velit_lsat-lr_base"
},
"veritatis-velit_lsat-ar_base": {
"acc,none": 0.2217391304347826,
"acc_stderr,none": 0.02745149660405891,
"alias": "veritatis-velit_lsat-ar_base"
},
"veritatis-velit_logiqa_base": {
"acc,none": 0.29073482428115016,
"acc_stderr,none": 0.018164056209177798,
"alias": "veritatis-velit_logiqa_base"
},
"veritatis-velit_logiqa2_base": {
"acc,none": 0.36704834605597964,
"acc_stderr,none": 0.01216070666440455,
"alias": "veritatis-velit_logiqa2_base"
},
"saepe-fuga_lsat-rc_base": {
"acc,none": 0.34944237918215615,
"acc_stderr,none": 0.02912482161970039,
"alias": "saepe-fuga_lsat-rc_base"
},
"saepe-fuga_lsat-lr_base": {
"acc,none": 0.2823529411764706,
"acc_stderr,none": 0.01995228875819785,
"alias": "saepe-fuga_lsat-lr_base"
},
"saepe-fuga_lsat-ar_base": {
"acc,none": 0.17391304347826086,
"acc_stderr,none": 0.025047317386049713,
"alias": "saepe-fuga_lsat-ar_base"
},
"saepe-fuga_logiqa_base": {
"acc,none": 0.30670926517571884,
"acc_stderr,none": 0.01844510522956535,
"alias": "saepe-fuga_logiqa_base"
},
"saepe-fuga_logiqa2_base": {
"acc,none": 0.36323155216284986,
"acc_stderr,none": 0.012133733683836157,
"alias": "saepe-fuga_logiqa2_base"
},
"nisi-sunt_lsat-rc_base": {
"acc,none": 0.31226765799256506,
"acc_stderr,none": 0.028307781204694345,
"alias": "nisi-sunt_lsat-rc_base"
},
"nisi-sunt_lsat-lr_base": {
"acc,none": 0.26862745098039215,
"acc_stderr,none": 0.019646519888599705,
"alias": "nisi-sunt_lsat-lr_base"
},
"nisi-sunt_lsat-ar_base": {
"acc,none": 0.20869565217391303,
"acc_stderr,none": 0.02685410826543969,
"alias": "nisi-sunt_lsat-ar_base"
},
"nisi-sunt_logiqa_base": {
"acc,none": 0.3003194888178914,
"acc_stderr,none": 0.018335874932123606,
"alias": "nisi-sunt_logiqa_base"
},
"nisi-sunt_logiqa2_base": {
"acc,none": 0.37659033078880405,
"acc_stderr,none": 0.01222456057756536,
"alias": "nisi-sunt_logiqa2_base"
},
"laboriosam-molestiae_lsat-rc_base": {
"acc,none": 0.3308550185873606,
"acc_stderr,none": 0.02874164221560224,
"alias": "laboriosam-molestiae_lsat-rc_base"
},
"laboriosam-molestiae_lsat-lr_base": {
"acc,none": 0.28627450980392155,
"acc_stderr,none": 0.020035401617079118,
"alias": "laboriosam-molestiae_lsat-lr_base"
},
"laboriosam-molestiae_lsat-ar_base": {
"acc,none": 0.18695652173913044,
"acc_stderr,none": 0.025763772398512335,
"alias": "laboriosam-molestiae_lsat-ar_base"
},
"laboriosam-molestiae_logiqa_base": {
"acc,none": 0.3146964856230032,
"acc_stderr,none": 0.018575795328740336,
"alias": "laboriosam-molestiae_logiqa_base"
},
"laboriosam-molestiae_logiqa2_base": {
"acc,none": 0.3746819338422392,
"acc_stderr,none": 0.012212196173823686,
"alias": "laboriosam-molestiae_logiqa2_base"
},
"iste-molestias_lsat-rc_base": {
"acc,none": 0.36059479553903345,
"acc_stderr,none": 0.029331239329958934,
"alias": "iste-molestias_lsat-rc_base"
},
"iste-molestias_lsat-lr_base": {
"acc,none": 0.2549019607843137,
"acc_stderr,none": 0.019316765480532974,
"alias": "iste-molestias_lsat-lr_base"
},
"iste-molestias_lsat-ar_base": {
"acc,none": 0.20869565217391303,
"acc_stderr,none": 0.026854108265439654,
"alias": "iste-molestias_lsat-ar_base"
},
"iste-molestias_logiqa_base": {
"acc,none": 0.30670926517571884,
"acc_stderr,none": 0.018445105229565353,
"alias": "iste-molestias_logiqa_base"
},
"iste-molestias_logiqa2_base": {
"acc,none": 0.38549618320610685,
"acc_stderr,none": 0.01227960059074116,
"alias": "iste-molestias_logiqa2_base"
},
"eum-saepe_lsat-rc_base": {
"acc,none": 0.3643122676579926,
"acc_stderr,none": 0.029396215063241374,
"alias": "eum-saepe_lsat-rc_base"
},
"eum-saepe_lsat-lr_base": {
"acc,none": 0.24313725490196078,
"acc_stderr,none": 0.01901408485181097,
"alias": "eum-saepe_lsat-lr_base"
},
"eum-saepe_lsat-ar_base": {
"acc,none": 0.19130434782608696,
"acc_stderr,none": 0.025991852462828487,
"alias": "eum-saepe_lsat-ar_base"
},
"eum-saepe_logiqa_base": {
"acc,none": 0.3035143769968051,
"acc_stderr,none": 0.01839101519560228,
"alias": "eum-saepe_logiqa_base"
},
"eum-saepe_logiqa2_base": {
"acc,none": 0.3651399491094148,
"acc_stderr,none": 0.01214732308367413,
"alias": "eum-saepe_logiqa2_base"
}
},
"configs": {
"eum-saepe_logiqa2_base": {
"task": "eum-saepe_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eum-saepe-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"eum-saepe_logiqa_base": {
"task": "eum-saepe_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eum-saepe-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"eum-saepe_lsat-ar_base": {
"task": "eum-saepe_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eum-saepe-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"eum-saepe_lsat-lr_base": {
"task": "eum-saepe_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eum-saepe-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"eum-saepe_lsat-rc_base": {
"task": "eum-saepe_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eum-saepe-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"iste-molestias_logiqa2_base": {
"task": "iste-molestias_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "iste-molestias-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"iste-molestias_logiqa_base": {
"task": "iste-molestias_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "iste-molestias-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"iste-molestias_lsat-ar_base": {
"task": "iste-molestias_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "iste-molestias-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"iste-molestias_lsat-lr_base": {
"task": "iste-molestias_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "iste-molestias-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"iste-molestias_lsat-rc_base": {
"task": "iste-molestias_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "iste-molestias-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-molestiae_logiqa2_base": {
"task": "laboriosam-molestiae_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-molestiae-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-molestiae_logiqa_base": {
"task": "laboriosam-molestiae_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-molestiae-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-molestiae_lsat-ar_base": {
"task": "laboriosam-molestiae_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-molestiae-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-molestiae_lsat-lr_base": {
"task": "laboriosam-molestiae_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-molestiae-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-molestiae_lsat-rc_base": {
"task": "laboriosam-molestiae_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-molestiae-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"nisi-sunt_logiqa2_base": {
"task": "nisi-sunt_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "nisi-sunt-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"nisi-sunt_logiqa_base": {
"task": "nisi-sunt_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "nisi-sunt-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"nisi-sunt_lsat-ar_base": {
"task": "nisi-sunt_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "nisi-sunt-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"nisi-sunt_lsat-lr_base": {
"task": "nisi-sunt_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "nisi-sunt-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"nisi-sunt_lsat-rc_base": {
"task": "nisi-sunt_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "nisi-sunt-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"saepe-fuga_logiqa2_base": {
"task": "saepe-fuga_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "saepe-fuga-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"saepe-fuga_logiqa_base": {
"task": "saepe-fuga_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "saepe-fuga-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"saepe-fuga_lsat-ar_base": {
"task": "saepe-fuga_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "saepe-fuga-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"saepe-fuga_lsat-lr_base": {
"task": "saepe-fuga_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "saepe-fuga-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"saepe-fuga_lsat-rc_base": {
"task": "saepe-fuga_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "saepe-fuga-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"veritatis-velit_logiqa2_base": {
"task": "veritatis-velit_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "veritatis-velit-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"veritatis-velit_logiqa_base": {
"task": "veritatis-velit_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "veritatis-velit-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"veritatis-velit_lsat-ar_base": {
"task": "veritatis-velit_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "veritatis-velit-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"veritatis-velit_lsat-lr_base": {
"task": "veritatis-velit_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "veritatis-velit-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"veritatis-velit_lsat-rc_base": {
"task": "veritatis-velit_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "veritatis-velit-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
}
},
"versions": {
"eum-saepe_logiqa2_base": 0.0,
"eum-saepe_logiqa_base": 0.0,
"eum-saepe_lsat-ar_base": 0.0,
"eum-saepe_lsat-lr_base": 0.0,
"eum-saepe_lsat-rc_base": 0.0,
"iste-molestias_logiqa2_base": 0.0,
"iste-molestias_logiqa_base": 0.0,
"iste-molestias_lsat-ar_base": 0.0,
"iste-molestias_lsat-lr_base": 0.0,
"iste-molestias_lsat-rc_base": 0.0,
"laboriosam-molestiae_logiqa2_base": 0.0,
"laboriosam-molestiae_logiqa_base": 0.0,
"laboriosam-molestiae_lsat-ar_base": 0.0,
"laboriosam-molestiae_lsat-lr_base": 0.0,
"laboriosam-molestiae_lsat-rc_base": 0.0,
"nisi-sunt_logiqa2_base": 0.0,
"nisi-sunt_logiqa_base": 0.0,
"nisi-sunt_lsat-ar_base": 0.0,
"nisi-sunt_lsat-lr_base": 0.0,
"nisi-sunt_lsat-rc_base": 0.0,
"saepe-fuga_logiqa2_base": 0.0,
"saepe-fuga_logiqa_base": 0.0,
"saepe-fuga_lsat-ar_base": 0.0,
"saepe-fuga_lsat-lr_base": 0.0,
"saepe-fuga_lsat-rc_base": 0.0,
"veritatis-velit_logiqa2_base": 0.0,
"veritatis-velit_logiqa_base": 0.0,
"veritatis-velit_lsat-ar_base": 0.0,
"veritatis-velit_lsat-lr_base": 0.0,
"veritatis-velit_lsat-rc_base": 0.0
},
"n-shot": {
"eum-saepe_logiqa2_base": 0,
"eum-saepe_logiqa_base": 0,
"eum-saepe_lsat-ar_base": 0,
"eum-saepe_lsat-lr_base": 0,
"eum-saepe_lsat-rc_base": 0,
"iste-molestias_logiqa2_base": 0,
"iste-molestias_logiqa_base": 0,
"iste-molestias_lsat-ar_base": 0,
"iste-molestias_lsat-lr_base": 0,
"iste-molestias_lsat-rc_base": 0,
"laboriosam-molestiae_logiqa2_base": 0,
"laboriosam-molestiae_logiqa_base": 0,
"laboriosam-molestiae_lsat-ar_base": 0,
"laboriosam-molestiae_lsat-lr_base": 0,
"laboriosam-molestiae_lsat-rc_base": 0,
"nisi-sunt_logiqa2_base": 0,
"nisi-sunt_logiqa_base": 0,
"nisi-sunt_lsat-ar_base": 0,
"nisi-sunt_lsat-lr_base": 0,
"nisi-sunt_lsat-rc_base": 0,
"saepe-fuga_logiqa2_base": 0,
"saepe-fuga_logiqa_base": 0,
"saepe-fuga_lsat-ar_base": 0,
"saepe-fuga_lsat-lr_base": 0,
"saepe-fuga_lsat-rc_base": 0,
"veritatis-velit_logiqa2_base": 0,
"veritatis-velit_logiqa_base": 0,
"veritatis-velit_lsat-ar_base": 0,
"veritatis-velit_lsat-lr_base": 0,
"veritatis-velit_lsat-rc_base": 0
},
"config": {
"model": "vllm",
"model_args": "pretrained=Deci/DeciLM-7B,revision=main,dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.9,trust_remote_code=true,max_length=4096",
"batch_size": "auto",
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null
},
"git_hash": "5044cf9"
}