ggbetz's picture
Upload results for model mistralai/Mistral-7B-Instruct-v0.3 (#944)
c70e38f verified
raw
history blame
16.1 kB
{
"results": {
"quisquam-commodi-1741_logiqa2_base": {
"alias": "quisquam-commodi-1741_logiqa2_base",
"acc,none": 0.4217557251908397,
"acc_stderr,none": 0.012459427048640294
},
"quisquam-commodi-1741_logiqa_base": {
"alias": "quisquam-commodi-1741_logiqa_base",
"acc,none": 0.3498402555910543,
"acc_stderr,none": 0.01907677336067249
},
"quisquam-commodi-1741_lsat-ar_base": {
"alias": "quisquam-commodi-1741_lsat-ar_base",
"acc,none": 0.24782608695652175,
"acc_stderr,none": 0.02853086259541007
},
"quisquam-commodi-1741_lsat-lr_base": {
"alias": "quisquam-commodi-1741_lsat-lr_base",
"acc,none": 0.3254901960784314,
"acc_stderr,none": 0.02076845539181952
},
"quisquam-commodi-1741_lsat-rc_base": {
"alias": "quisquam-commodi-1741_lsat-rc_base",
"acc,none": 0.43866171003717475,
"acc_stderr,none": 0.030311665540718367
}
},
"group_subtasks": {
"quisquam-commodi-1741_logiqa2_base": [],
"quisquam-commodi-1741_logiqa_base": [],
"quisquam-commodi-1741_lsat-ar_base": [],
"quisquam-commodi-1741_lsat-lr_base": [],
"quisquam-commodi-1741_lsat-rc_base": []
},
"configs": {
"quisquam-commodi-1741_logiqa2_base": {
"task": "quisquam-commodi-1741_logiqa2_base",
"tag": "logikon-bench",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
"dataset_kwargs": {
"data_files": {
"test": "data/mistralai/Mistral-7B-Instruct-v0.3/quisquam-commodi-1741-logiqa2.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"quisquam-commodi-1741_logiqa_base": {
"task": "quisquam-commodi-1741_logiqa_base",
"tag": "logikon-bench",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
"dataset_kwargs": {
"data_files": {
"test": "data/mistralai/Mistral-7B-Instruct-v0.3/quisquam-commodi-1741-logiqa.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"quisquam-commodi-1741_lsat-ar_base": {
"task": "quisquam-commodi-1741_lsat-ar_base",
"tag": "logikon-bench",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
"dataset_kwargs": {
"data_files": {
"test": "data/mistralai/Mistral-7B-Instruct-v0.3/quisquam-commodi-1741-lsat-ar.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"quisquam-commodi-1741_lsat-lr_base": {
"task": "quisquam-commodi-1741_lsat-lr_base",
"tag": "logikon-bench",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
"dataset_kwargs": {
"data_files": {
"test": "data/mistralai/Mistral-7B-Instruct-v0.3/quisquam-commodi-1741-lsat-lr.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"quisquam-commodi-1741_lsat-rc_base": {
"task": "quisquam-commodi-1741_lsat-rc_base",
"tag": "logikon-bench",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
"dataset_kwargs": {
"data_files": {
"test": "data/mistralai/Mistral-7B-Instruct-v0.3/quisquam-commodi-1741-lsat-rc.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
}
},
"versions": {
"quisquam-commodi-1741_logiqa2_base": 0.0,
"quisquam-commodi-1741_logiqa_base": 0.0,
"quisquam-commodi-1741_lsat-ar_base": 0.0,
"quisquam-commodi-1741_lsat-lr_base": 0.0,
"quisquam-commodi-1741_lsat-rc_base": 0.0
},
"n-shot": {
"quisquam-commodi-1741_logiqa2_base": 0,
"quisquam-commodi-1741_logiqa_base": 0,
"quisquam-commodi-1741_lsat-ar_base": 0,
"quisquam-commodi-1741_lsat-lr_base": 0,
"quisquam-commodi-1741_lsat-rc_base": 0
},
"higher_is_better": {
"quisquam-commodi-1741_logiqa2_base": {
"acc": true
},
"quisquam-commodi-1741_logiqa_base": {
"acc": true
},
"quisquam-commodi-1741_lsat-ar_base": {
"acc": true
},
"quisquam-commodi-1741_lsat-lr_base": {
"acc": true
},
"quisquam-commodi-1741_lsat-rc_base": {
"acc": true
}
},
"n-samples": {
"quisquam-commodi-1741_lsat-rc_base": {
"original": 269,
"effective": 269
},
"quisquam-commodi-1741_lsat-lr_base": {
"original": 510,
"effective": 510
},
"quisquam-commodi-1741_lsat-ar_base": {
"original": 230,
"effective": 230
},
"quisquam-commodi-1741_logiqa_base": {
"original": 626,
"effective": 626
},
"quisquam-commodi-1741_logiqa2_base": {
"original": 1572,
"effective": 1572
}
},
"config": {
"model": "local-completions",
"model_args": "base_url=http://localhost:8080/v1/completions,num_concurrent=1,max_retries=3,tokenized_requests=False,model=mistralai/Mistral-7B-Instruct-v0.3,trust_remote_code=True",
"batch_size": "1",
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "d7733d8",
"date": 1728078584.577916,
"pretty_env_info": "PyTorch version: 2.4.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Red Hat Enterprise Linux release 8.8 (Ootpa) (x86_64)\nGCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18)\nClang version: Could not collect\nCMake version: version 3.20.2\nLibc version: glibc-2.28\n\nPython version: 3.11.2 (main, May 20 2024, 08:58:58) [GCC 8.5.0 20210514 (Red Hat 8.5.0-18)] (64-bit runtime)\nPython platform: Linux-4.18.0-477.70.1.el8_8.x86_64-x86_64-with-glibc2.28\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: NVIDIA H100\nNvidia driver version: 550.54.15\ncuDNN version: Probably one of the following:\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.1.1\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitektur: x86_64\nCPU Operationsmodus: 32-bit, 64-bit\nByte-Reihenfolge: Little Endian\nCPU(s): 128\nListe der Online-CPU(s): 0-127\nThread(s) pro Kern: 2\nKern(e) pro Socket: 32\nSockel: 2\nNUMA-Knoten: 2\nAnbieterkennung: AuthenticAMD\nProzessorfamilie: 25\nModell: 17\nModellname: AMD EPYC 9354 32-Core Processor\nStepping: 1\nCPU MHz: 3800.000\nMaximale Taktfrequenz der CPU: 3800,0000\nMinimale Taktfrequenz der CPU: 400,0000\nBogoMIPS: 6500.29\nVirtualisierung: AMD-V\nL1d Cache: 32K\nL1i Cache: 32K\nL2 Cache: 1024K\nL3 Cache: 32768K\nNUMA-Knoten0 CPU(s): 0-31,64-95\nNUMA-Knoten1 CPU(s): 32-63,96-127\nMarkierungen: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.4.1\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.45.1",
"upper_git_hash": null,
"tokenizer_pad_token": [
"<unk>",
"0"
],
"tokenizer_eos_token": [
"</s>",
"2"
],
"tokenizer_bos_token": [
"<s>",
"1"
],
"eot_token_id": 2,
"max_length": 2047,
"task_hashes": {},
"model_source": "local-completions",
"model_name": "mistralai/Mistral-7B-Instruct-v0.3",
"model_name_sanitized": "mistralai__Mistral-7B-Instruct-v0.3",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 893379.017138377,
"end_time": 893829.940966568,
"total_evaluation_time_seconds": "450.9238281910075"
}