|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Physical Reasoning about Objects Through Space and Time (PROST) |
|
|
|
PROST is a probing dataset to evaluate the ability of pretrained LMs to |
|
understand and reason about the physical world. |
|
""" |
|
import json |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{aroca-ouellette-etal-2021-prost, |
|
title = "{PROST}: {P}hysical Reasoning about Objects through Space and Time", |
|
author = "Aroca-Ouellette, St{\'e}phane and |
|
Paik, Cory and |
|
Roncone, Alessandro and |
|
Kann, Katharina", |
|
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", |
|
month = aug, |
|
year = "2021", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.findings-acl.404", |
|
pages = "4597--4608", |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
*Physical Reasoning about Objects Through Space and Time* (PROST) is a probing dataset to evaluate the ability of pretrained LMs to understand and reason about the physical world. PROST consists of 18,736 cloze-style multiple choice questions from 14 manually curated templates, covering 10 physical reasoning concepts: direction, mass, height, circumference, stackable, rollable, graspable, breakable, slideable, and bounceable. |
|
""" |
|
|
|
_HOMEPAGE = 'https://github.com/nala-cub/prost' |
|
_LICENSE = 'Apache 2.0' |
|
|
|
_URL = 'https://huggingface.co./datasets/corypaik/prost/resolve/main/data' |
|
|
|
_URLs = {'default': f'{_URL}/default.jsonl'} |
|
|
|
MC_LABELS = list('ABCD') |
|
|
|
|
|
class Prost(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version('1.0.1') |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'A': datasets.Value('string'), |
|
'B': datasets.Value('string'), |
|
'C': datasets.Value('string'), |
|
'D': datasets.Value('string'), |
|
'context': datasets.Value('string'), |
|
'question': datasets.Value('string'), |
|
'ex_question': datasets.Value('string'), |
|
'group': datasets.Value('string'), |
|
'label': datasets.ClassLabel(names=MC_LABELS), |
|
'name': datasets.Value('string'),}) |
|
return datasets.DatasetInfo(description=_DESCRIPTION, features=features, |
|
supervised_keys=None, homepage=_HOMEPAGE, |
|
license=_LICENSE, citation=_CITATION) |
|
|
|
def _split_generators(self, dl_manager): |
|
""" Returns SplitGenerators.""" |
|
path = dl_manager.download_and_extract(_URLs[self.config.name]) |
|
kwargs = {'path': path} |
|
return [datasets.SplitGenerator(datasets.Split.TEST, gen_kwargs=kwargs)] |
|
|
|
def _generate_examples(self, path): |
|
with open(path, 'r') as f: |
|
for _id, line in enumerate(f.readlines()): |
|
yield _id, json.loads(line) |
|
|