File size: 9,144 Bytes
5027966
 
 
 
 
448a192
5027966
 
448a192
b10a728
5027966
 
 
7db60de
5027966
 
 
 
 
 
 
95fde78
7138ac4
37cff9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c60d8a5
 
 
37cff9d
 
 
 
 
5027966
 
 
 
 
 
 
95fde78
5027966
 
 
95fde78
 
5027966
 
 
 
 
 
 
 
 
 
 
 
 
48e3833
5027966
 
 
e3cc569
 
 
5027966
e3cc569
5027966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7138ac4
5027966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48e3833
 
 
37cff9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
language:
- en
- nl
license:
- cc-by-nc-4.0
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
- multi-label-classification
paperswithcode_id: null
pretty_name: Dutch Social Media Collection
dataset_info:
  features:
  - name: full_text
    dtype: string
  - name: text_translation
    dtype: string
  - name: screen_name
    dtype: string
  - name: description
    dtype: string
  - name: desc_translation
    dtype: string
  - name: location
    dtype: string
  - name: weekofyear
    dtype: int64
  - name: weekday
    dtype: int64
  - name: month
    dtype: int64
  - name: year
    dtype: int64
  - name: day
    dtype: int64
  - name: point_info
    dtype: string
  - name: point
    dtype: string
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: altitude
    dtype: float64
  - name: province
    dtype: string
  - name: hisco_standard
    dtype: string
  - name: hisco_code
    dtype: string
  - name: industry
    dtype: bool_
  - name: sentiment_pattern
    dtype: float64
  - name: subjective_pattern
    dtype: float64
  - name: label
    dtype:
      class_label:
        names:
          0: neg
          1: neu
          2: pos
  config_name: dutch_social
  splits:
  - name: train
    num_bytes: 105569586
    num_examples: 162805
  - name: test
    num_bytes: 35185351
    num_examples: 54268
  - name: validation
    num_bytes: 34334756
    num_examples: 54269
  download_size: 68740666
  dataset_size: 175089693
---

# Dataset Card for Dutch Social Media Collection

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Dutch Social Media Collection](http://datasets.coronawhy.org/dataset.xhtml?persistentId=doi:10.5072/FK2/MTPTL7)
- **Repository:**
- **Paper:** *(in-progress)* https://doi.org/10.5072/FK2/MTPTL7
- **Leaderboard:**
- **Point of Contact:** [Aakash Gupta](mailto:[email protected])

### Dataset Summary

The dataset contains 10 files with around 271,342 tweets. The tweets are filtered via the official Twitter API to contain tweets in Dutch language or by users who have specified their location information within Netherlands geographical boundaries. Using natural language processing we have classified the tweets for their HISCO codes. If the user has provided their location within Dutch boundaries, we have also classified them to their respective provinces The objective of this dataset is to make research data available publicly in a FAIR (Findable, Accessible, Interoperable, Reusable) way. Twitter's Terms of Service Licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) (2020-10-27)

### Supported Tasks and Leaderboards

`sentiment analysis`, `multi-label classification`, `entity-extraction`

### Languages

The text is primarily in Dutch with some tweets in English and other languages. The BCP 47 code is `nl` and `en`

## Dataset Structure

### Data Instances

An example of the data field will be: 

```
{
  "full_text": "@pflegearzt @Friedelkorn @LAguja44 Pardon, wollte eigentlich das zitieren: \nhttps://t.co/ejO7bIMyj8\nMeine mentions sind inzw komplett undurchschaubar weil da Leute ihren supporterclub zwecks Likes zusammengerufen haben.",
  "text_translation": "@pflegearzt @Friedelkorn @ LAguja44 Pardon wollte zitieren eigentlich das:\nhttps://t.co/ejO7bIMyj8\nMeine mentions inzw sind komplett undurchschaubar weil da Leute ihren supporter club Zwecks Likes zusammengerufen haben.",
  "created_at": 1583756789000,
  "screen_name": "TheoRettich",
  "description": "I ❤️science, therefore a Commie.   ☭ FALGSC: Part of a conspiracy which wants to achieve world domination. Tankie-Cornucopian. Ecology is a myth",
  "desc_translation": "I ❤️science, Therefore a Commie. ☭ FALGSC: Part of a conspiracy How many followers wants to Achieve World Domination. Tankie-Cornucopian. Ecology is a myth",
  "weekofyear": 11,
  "weekday": 0,
  "day": 9,
  "month": 3,
  "year": 2020,
  "location": "Netherlands",
  "point_info": "Nederland",
  "point": "(52.5001698, 5.7480821, 0.0)",
  "latitude": 52.5001698,
  "longitude": 5.7480821,
  "altitude": 0,
  "province": "Flevoland",
  "hisco_standard": null,
  "hisco_code": null,
  "industry": false,
  "sentiment_pattern": 0,
  "subjective_pattern": 0
}
```

### Data Fields


| Column Name | Description |
| --- | --- |
| full_text | Original text in the tweet |
| text_translation | English translation of the full text |
| created_at | Date of tweet creation | 
| screen_name | username of the tweet author |
| description | description as provided in the users bio | 
| desc_translation | English translation of user's bio/ description | 
| location | Location information as provided in the user's bio |
| weekofyear | week of the year |
| weekday | Day of the week information; Monday=0....Sunday = 6| 
| month | Month of tweet creation |
| year | year of tweet creation |
| day | day of tweet creation |
| point_info | point information from location columnd |
| point | tuple giving lat, lon & altitude information |
| latitude | geo-referencing information derived from location data | 
| longitude | geo-referencing information derived from location data |
| altitude | geo-referencing information derived from location data|
| province | Province given location data of user |
| hisco_standard | HISCO standard key word; if available in tweet |
| hisco_code| HISCO standard code as derived from `hisco_standard`|
| industry | Whether the tweet talks about industry `(True/False)` |
| sentiment_score | Sentiment score -1.0 to 1.0 |
| subjectivity_score | Subjectivity scores 0 to 1 |

Missing values are replaced with empty strings or -1 (-100 for missing sentiment_score).


### Data Splits

Data has been split into Train: 60%, Validation: 20% and Test: 20%

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

The tweets were hydrated using Twitter's API and then filtered for those which were in Dutch language and/or for users who had mentioned that they were from within Netherlands geographical borders. 

#### Who are the source language producers?

The language producers are twitter users who have identified their location within the geographical boundaries of Netherland. Or those who have tweeted in the dutch language!

### Annotations

Using Natural language processing, we have classified the tweets on industry and for HSN HISCO codes. 
Depending on the user's location, their provincial information is also added. Please check the file/column for detailed information. 

The tweets are also classified on the sentiment & subjectivity scores. 
Sentiment scores are between -1 to +1 
Subjectivity scores are between 0 to 1

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

As of writing this data card no anonymization has been carried out on the tweets or user data. As such, if the twitter user has shared any personal & sensitive information, then it may be available in this dataset. 

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

Dataset provided for research purposes only. Please check dataset license for additional information.

## Additional Information

### Dataset Curators

[Aakash Gupta](mailto:[email protected]) 
*Th!nkEvolve Consulting* and Researcher at CoronaWhy

### Licensing Information

CC BY-NC 4.0

### Citation Information

@data{FK2/MTPTL7_2020,
author = {Gupta, Aakash},
publisher = {COVID-19 Data Hub},
title = {{Dutch social media collection}},
year = {2020},
version = {DRAFT VERSION},
doi = {10.5072/FK2/MTPTL7},
url = {https://doi.org/10.5072/FK2/MTPTL7}
}

### Contributions

Thanks to [@skyprince999](https://github.com/skyprince999) for adding this dataset.