Marcio Monteiro commited on
Commit
9f770cb
·
1 Parent(s): 9cd0946

first commit

Browse files
Files changed (1) hide show
  1. convert.py +71 -0
convert.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+
3
+ from random import shuffle
4
+
5
+ import pandas as pd
6
+
7
+ NEGATIVE = 0
8
+ POSITIVE = 1
9
+
10
+ ROTTEN = 0
11
+ FRESH = 1
12
+
13
+
14
+ def parse_is_top_critic(is_top_critic):
15
+ return is_top_critic == "True"
16
+
17
+
18
+ def parse_score_sentiment(score):
19
+ if score == "NEGATIVE":
20
+ return NEGATIVE
21
+ if score == "POSITIVE":
22
+ return POSITIVE
23
+ raise ValueError(f"Unknown score sentiment: {score}")
24
+
25
+
26
+ def parse_review_state(review_state):
27
+ if review_state == "rotten":
28
+ return ROTTEN
29
+ if review_state == "fresh":
30
+ return FRESH
31
+
32
+ raise ValueError(f"Unknown review state: {review_state}")
33
+
34
+
35
+ def run():
36
+ with open("rotten_tomatoes_movie_reviews.csv") as f:
37
+ reader = csv.DictReader(f)
38
+ rows = list(reader)
39
+
40
+ positive_rows = []
41
+ negative_rows = []
42
+
43
+ for row in rows:
44
+ row["isTopCritic"] = parse_is_top_critic(row["isTopCritic"])
45
+ row["scoreSentiment"] = parse_score_sentiment(row["scoreSentiment"])
46
+ row["reviewState"] = parse_review_state(row["reviewState"])
47
+
48
+ if row["scoreSentiment"] == POSITIVE:
49
+ positive_rows.append(row)
50
+ else:
51
+ negative_rows.append(row)
52
+
53
+ # Save rows to csv file called original.csv
54
+ pd.DataFrame(rows).to_csv("original.csv", index=False)
55
+
56
+ shuffle(positive_rows)
57
+ shuffle(negative_rows)
58
+
59
+ # Generate the balanced datasets
60
+ balanced_size = min(len(positive_rows), len(negative_rows))
61
+ balanced_rows = []
62
+ for i in range(0, balanced_size):
63
+ balanced_rows.append(positive_rows[i])
64
+ balanced_rows.append(negative_rows[i])
65
+
66
+ # Save balanced rows to csv file called balanced.csv
67
+ pd.DataFrame(balanced_rows).to_csv("balanced.csv", index=False)
68
+
69
+
70
+ if __name__ == "__main__":
71
+ run()