Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Swedish
Size:
100K - 1M
License:
File size: 8,324 Bytes
c61eb12 3e2646a 963abbd 3e2646a d881dd1 c61eb12 1d97671 c61eb12 678294c 1004a77 99d06ea 1004a77 678294c 1004a77 20192f0 99d06ea 20192f0 1004a77 678294c 1004a77 f885922 1004a77 f885922 99d06ea 1004a77 678294c 1004a77 99d06ea 20192f0 f885922 99d06ea c61eb12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
---
annotations_creators:
- machine-generated
- expert-generated
language_creators:
- found
language:
- sv
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: SwedMedNER
language_bcp47:
- sv-SE
dataset_info:
- config_name: '1177'
features:
- name: sid
dtype: string
- name: sentence
dtype: string
- name: entities
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: text
dtype: string
- name: type
dtype:
class_label:
names:
'0': Disorder and Finding
'1': Pharmaceutical Drug
'2': Body Structure
splits:
- name: train
num_bytes: 158979
num_examples: 927
download_size: 77472
dataset_size: 158979
- config_name: lt
features:
- name: sid
dtype: string
- name: sentence
dtype: string
- name: entities
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: text
dtype: string
- name: type
dtype:
class_label:
names:
'0': Disorder and Finding
'1': Pharmaceutical Drug
'2': Body Structure
splits:
- name: train
num_bytes: 97953187
num_examples: 745753
download_size: 52246351
dataset_size: 97953187
- config_name: wiki
features:
- name: sid
dtype: string
- name: sentence
dtype: string
- name: entities
sequence:
- name: start
dtype: int32
- name: end
dtype: int32
- name: text
dtype: string
- name: type
dtype:
class_label:
names:
'0': Disorder and Finding
'1': Pharmaceutical Drug
'2': Body Structure
splits:
- name: train
num_bytes: 7044574
num_examples: 48720
download_size: 2571416
dataset_size: 7044574
configs:
- config_name: '1177'
data_files:
- split: train
path: 1177/train-*
- config_name: lt
data_files:
- split: train
path: lt/train-*
- config_name: wiki
data_files:
- split: train
path: wiki/train-*
---
# Dataset Card for swedish_medical_ner
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/olofmogren/biomedical-ner-data-swedish
- **Paper:** [Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs](https://aclanthology.org/W16-5104.pdf)
- **Point of Contact:** [Olof Mogren]([email protected])
### Dataset Summary
SwedMedNER is Named Entity Recognition dataset on medical text in Swedish. It consists three subsets which are in turn derived from three different sources respectively: the Swedish Wikipedia (a.k.a. wiki), Läkartidningen (a.k.a. lt), and 1177 Vårdguiden (a.k.a. 1177). While the Swedish Wikipedia and Läkartidningen subsets in total contains over 790000 sequences with 60 characters each, the 1177 Vårdguiden subset is manually annotated and contains 927 sentences, 2740 annotations, out of which 1574 are _disorder and findings_, 546 are _pharmaceutical drug_, and 620 are _body structure_.
Texts from both Swedish Wikipedia and Läkartidningen were automatically annotated using a list of medical seed terms. Sentences from 1177 Vårdguiden were manuually annotated.
### Supported Tasks and Leaderboards
Medical NER.
### Languages
Swedish (SV).
## Dataset Structure
### Data Instances
Annotated example sentences are shown below:
```
( Förstoppning ) är ett vanligt problem hos äldre.
[ Cox-hämmare ] finns även som gel och sprej.
[ Medicinen ] kan också göra att man blöder lättare eftersom den påverkar { blodets } förmåga att levra sig.
```
Tags are as follows:
- Prenthesis, (): Disorder and Finding
- Brackets, []: Pharmaceutical Drug
- Curly brackets, {}: Body Structure
Data example:
```
In: data = load_dataset('./datasets/swedish_medical_ner', "wiki")
In: data['train']:
Out:
Dataset({
features: ['sid', 'sentence', 'entities'],
num_rows: 48720
})
In: data['train'][0]['sentence']
Out: '{kropp} beskrivs i till exempel människokroppen, anatomi och f'
In: data['train'][0]['entities']
Out: {'start': [0], 'end': [7], 'text': ['kropp'], 'type': [2]}
```
### Data Fields
- `sentence`
- `entities`
- `start`: the start index
- `end`: the end index
- `text`: the text of the entity
- `type`: entity type: Disorder and Finding (0), Pharmaceutical Drug (1) or Body Structure (2)
### Data Splits
In the original paper, its authors used the text from Läkartidningen for model training, Swedish Wikipedia for validation, and 1177.se for the final model evaluation.
## Dataset Creation
### Curation Rationale
### Source Data
- Swedish Wikipedia;
- Läkartidningen - contains articles from the Swedish journal for medical professionals;
- 1177.se - a web site provided by the Swedish public health care authorities, containing information, counselling, and other health-care services.
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
- A list of seed terms was extracted using SweMeSH and SNOMED CT;
- The following predefined categories was used for the extraction: disorder & finding (sjukdom & symtom), pharmaceutical drug (läkemedel) and body structure (kroppsdel)
- For _Swedish Wikipedia_, an initial list of medical domain articles were selected manually. These source articles as well as their linked articles were downloaded and automatically annotated by finding the aforementioned seed terms with a context window of 60 characters;
- Articles from the _Läkartidningen_ corpus were downloaded and automatically annotated by finding the aforementioned seed terms with a context window of 60 characters;
- 15 documents from _1177.se_ were downloaded in May 2016 and then manually annotated with the seed terms as support, resulting 2740 annotations.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
- Simon Almgren, [email protected]
- Sean Pavlov, [email protected]
- Olof Mogren, [email protected]
Chalmers University of Technology
### Licensing Information
This dataset is released under the [Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)](http://creativecommons.org/licenses/by-sa/4.0/).
### Citation Information
```bibtex
@inproceedings{almgrenpavlovmogren2016bioner,
title={Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs},
author={Simon Almgren, Sean Pavlov, Olof Mogren},
booktitle={Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016)},
pages={1},
year={2016}
}
```
### Contributions
Thanks to [@bwang482](https://github.com/bwang482) for adding this dataset. |