|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Farsi News Datasets: Hamshahri and RadioFarda""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Contains Farsi (Persian) datasets for Machine Learning tasks, particularly NLP. |
|
These datasets have been extracted from the RSS feed of two Farsi news agency websites: |
|
|
|
- Hamshahri |
|
- RadioFarda |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/sci2lab/Farsi-datasets/master/farsi_news/" |
|
_URLS = { |
|
"hamshahri": _URL + "hamshahri.json", |
|
"radiofarda": _URL + "radiofarda.json", |
|
} |
|
|
|
|
|
class FarsiNews(datasets.GeneratorBasedBuilder): |
|
"""Farsi News Datasets: Hamshahri and RadioFarda""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"title": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"link": datasets.Value("string"), |
|
"tags": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://github.com/sci2lab/Farsi-datasets", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
urls_to_download = _URLS |
|
dl_dir = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator( |
|
name="hamshahri", |
|
|
|
gen_kwargs={"filepath": dl_dir["hamshahri"], "split": "hamshahri"}, |
|
), |
|
datasets.SplitGenerator( |
|
name="radiofarda", |
|
|
|
gen_kwargs={"filepath": dl_dir["radiofarda"], "split": "radiofarda"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for id_, example in enumerate(data): |
|
yield id_, example |
|
|