File size: 28,759 Bytes
064fab9 352f732 064fab9 352f732 064fab9 352f732 064fab9 352f732 064fab9 352f732 064fab9 352f732 064fab9 352f732 064fab9 352f732 064fab9 d3e022f 064fab9 d3e022f 064fab9 d3e022f 064fab9 d3e022f 064fab9 d3e022f 064fab9 d3e022f 064fab9 d3e022f 064fab9 d3e022f 064fab9 ffa3e5f 064fab9 ffa3e5f 064fab9 ffa3e5f 064fab9 ffa3e5f 064fab9 ffa3e5f 064fab9 ffa3e5f 064fab9 ffa3e5f 064fab9 ffa3e5f 064fab9 6af614c 064fab9 6af614c 064fab9 6af614c 064fab9 6af614c 064fab9 6af614c 064fab9 6af614c 064fab9 6af614c 064fab9 6af614c 064fab9 b7b8b58 064fab9 b7b8b58 064fab9 b7b8b58 064fab9 b7b8b58 064fab9 b7b8b58 064fab9 b7b8b58 064fab9 b7b8b58 064fab9 b7b8b58 064fab9 fe9d5f8 064fab9 fe9d5f8 064fab9 fe9d5f8 064fab9 fe9d5f8 064fab9 fe9d5f8 064fab9 fe9d5f8 064fab9 fe9d5f8 064fab9 fe9d5f8 064fab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
{
"ecthr_a": {
"description": "The European Court of Human Rights (ECtHR) hears allegations that a state has\nbreached human rights provisions of the European Convention of Human Rights (ECHR).\nFor each case, the dataset provides a list of factual paragraphs (facts) from the case description.\nEach case is mapped to articles of the ECHR that were violated (if any).",
"citation": "@inproceedings{chalkidis-etal-2021-paragraph,\n title = \"Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases\",\n author = \"Chalkidis, Ilias and\n Fergadiotis, Manos and\n Tsarapatsanis, Dimitrios and\n Aletras, Nikolaos and\n Androutsopoulos, Ion and\n Malakasiotis, Prodromos\",\n booktitle = \"Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies\",\n month = jun,\n year = \"2021\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/2021.naacl-main.22\",\n doi = \"10.18653/v1/2021.naacl-main.22\",\n pages = \"226--241\",\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}",
"homepage": "https://archive.org/details/ECtHR-NAACL2021",
"license": "",
"features": {
"text": {
"feature": {
"dtype": "string",
"_type": "Value"
},
"_type": "Sequence"
},
"labels": {
"feature": {
"names": [
"2",
"3",
"5",
"6",
"8",
"9",
"10",
"11",
"14",
"P1-1"
],
"_type": "ClassLabel"
},
"_type": "Sequence"
}
},
"builder_name": "lex_glue",
"dataset_name": "lex_glue",
"config_name": "ecthr_a",
"version": {
"version_str": "1.0.0",
"description": "",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 89637449,
"num_examples": 9000,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 11884168,
"num_examples": 1000,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 10985168,
"num_examples": 1000,
"dataset_name": null
}
},
"download_size": 53352586,
"dataset_size": 112506785,
"size_in_bytes": 165859371
},
"ecthr_b": {
"description": "The European Court of Human Rights (ECtHR) hears allegations that a state has\nbreached human rights provisions of the European Convention of Human Rights (ECHR).\nFor each case, the dataset provides a list of factual paragraphs (facts) from the case description.\nEach case is mapped to articles of ECHR that were allegedly violated (considered by the court).",
"citation": "@inproceedings{chalkidis-etal-2021-paragraph,\n title = \"Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases\",\n author = \"Chalkidis, Ilias\n and Fergadiotis, Manos\n and Tsarapatsanis, Dimitrios\n and Aletras, Nikolaos\n and Androutsopoulos, Ion\n and Malakasiotis, Prodromos\",\n booktitle = \"Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies\",\n year = \"2021\",\n address = \"Online\",\n url = \"https://aclanthology.org/2021.naacl-main.22\",\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}",
"homepage": "https://archive.org/details/ECtHR-NAACL2021",
"license": "",
"features": {
"text": {
"feature": {
"dtype": "string",
"_type": "Value"
},
"_type": "Sequence"
},
"labels": {
"feature": {
"names": [
"2",
"3",
"5",
"6",
"8",
"9",
"10",
"11",
"14",
"P1-1"
],
"_type": "ClassLabel"
},
"_type": "Sequence"
}
},
"builder_name": "lex_glue",
"dataset_name": "lex_glue",
"config_name": "ecthr_b",
"version": {
"version_str": "1.0.0",
"description": "",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 89657649,
"num_examples": 9000,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 11886928,
"num_examples": 1000,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 10987816,
"num_examples": 1000,
"dataset_name": null
}
},
"download_size": 53352494,
"dataset_size": 112532393,
"size_in_bytes": 165884887
},
"eurlex": {
"description": "European Union (EU) legislation is published in EUR-Lex portal.\nAll EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus,\na multilingual thesaurus maintained by the Publications Office.\nThe current version of EuroVoc contains more than 7k concepts referring to various activities\nof the EU and its Member States (e.g., economics, health-care, trade).\nGiven a document, the task is to predict its EuroVoc labels (concepts).",
"citation": "@inproceedings{chalkidis-etal-2021-multieurlex,\n author = {Chalkidis, Ilias and\n Fergadiotis, Manos and\n Androutsopoulos, Ion},\n title = {MultiEURLEX -- A multi-lingual and multi-label legal document\n classification dataset for zero-shot cross-lingual transfer},\n booktitle = {Proceedings of the 2021 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}",
"homepage": "https://zenodo.org/record/5363165#.YVJOAi8RqaA",
"license": "",
"features": {
"text": {
"dtype": "string",
"_type": "Value"
},
"labels": {
"feature": {
"names": [
"100163",
"100168",
"100169",
"100170",
"100171",
"100172",
"100173",
"100174",
"100175",
"100176",
"100177",
"100179",
"100180",
"100183",
"100184",
"100185",
"100186",
"100187",
"100189",
"100190",
"100191",
"100192",
"100193",
"100194",
"100195",
"100196",
"100197",
"100198",
"100199",
"100200",
"100201",
"100202",
"100204",
"100205",
"100206",
"100207",
"100212",
"100214",
"100215",
"100220",
"100221",
"100222",
"100223",
"100224",
"100226",
"100227",
"100229",
"100230",
"100231",
"100232",
"100233",
"100234",
"100235",
"100237",
"100238",
"100239",
"100240",
"100241",
"100242",
"100243",
"100244",
"100245",
"100246",
"100247",
"100248",
"100249",
"100250",
"100252",
"100253",
"100254",
"100255",
"100256",
"100257",
"100258",
"100259",
"100260",
"100261",
"100262",
"100263",
"100264",
"100265",
"100266",
"100268",
"100269",
"100270",
"100271",
"100272",
"100273",
"100274",
"100275",
"100276",
"100277",
"100278",
"100279",
"100280",
"100281",
"100282",
"100283",
"100284",
"100285"
],
"_type": "ClassLabel"
},
"_type": "Sequence"
}
},
"builder_name": "lex_glue",
"dataset_name": "lex_glue",
"config_name": "eurlex",
"version": {
"version_str": "1.0.0",
"description": "",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 390770241,
"num_examples": 55000,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 59739094,
"num_examples": 5000,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 41544476,
"num_examples": 5000,
"dataset_name": null
}
},
"download_size": 208028049,
"dataset_size": 492053811,
"size_in_bytes": 700081860
},
"scotus": {
"description": "The US Supreme Court (SCOTUS) is the highest federal court in the United States of America\nand generally hears only the most controversial or otherwise complex cases which have not\nbeen sufficiently well solved by lower courts. This is a single-label multi-class classification\ntask, where given a document (court opinion), the task is to predict the relevant issue areas.\nThe 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute).",
"citation": "@misc{spaeth2020,\n author = {Harold J. Spaeth and Lee Epstein and Andrew D. Martin, Jeffrey A. Segal\n and Theodore J. Ruger and Sara C. Benesh},\n year = {2020},\n title ={{Supreme Court Database, Version 2020 Release 01}},\n url= {http://Supremecourtdatabase.org},\n howpublished={Washington University Law}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}",
"homepage": "http://scdb.wustl.edu/data.php",
"license": "",
"features": {
"text": {
"dtype": "string",
"_type": "Value"
},
"label": {
"names": [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13"
],
"_type": "ClassLabel"
}
},
"builder_name": "lex_glue",
"dataset_name": "lex_glue",
"config_name": "scotus",
"version": {
"version_str": "1.0.0",
"description": "",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 178959316,
"num_examples": 5000,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 76213279,
"num_examples": 1400,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 75600243,
"num_examples": 1400,
"dataset_name": null
}
},
"download_size": 173411399,
"dataset_size": 330772838,
"size_in_bytes": 504184237
},
"ledgar": {
"description": "LEDGAR dataset aims contract provision (paragraph) classification.\nThe contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC)\nfilings, which are publicly available from EDGAR. Each label represents the single main topic\n(theme) of the corresponding contract provision.",
"citation": "@inproceedings{tuggener-etal-2020-ledgar,\n title = \"{LEDGAR}: A Large-Scale Multi-label Corpus for Text Classification of Legal Provisions in Contracts\",\n author = {Tuggener, Don and\n von D{\"a}niken, Pius and\n Peetz, Thomas and\n Cieliebak, Mark},\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n year = \"2020\",\n address = \"Marseille, France\",\n url = \"https://aclanthology.org/2020.lrec-1.155\",\n}\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}",
"homepage": "https://metatext.io/datasets/ledgar",
"license": "",
"features": {
"text": {
"dtype": "string",
"_type": "Value"
},
"label": {
"names": [
"Adjustments",
"Agreements",
"Amendments",
"Anti-Corruption Laws",
"Applicable Laws",
"Approvals",
"Arbitration",
"Assignments",
"Assigns",
"Authority",
"Authorizations",
"Base Salary",
"Benefits",
"Binding Effects",
"Books",
"Brokers",
"Capitalization",
"Change In Control",
"Closings",
"Compliance With Laws",
"Confidentiality",
"Consent To Jurisdiction",
"Consents",
"Construction",
"Cooperation",
"Costs",
"Counterparts",
"Death",
"Defined Terms",
"Definitions",
"Disability",
"Disclosures",
"Duties",
"Effective Dates",
"Effectiveness",
"Employment",
"Enforceability",
"Enforcements",
"Entire Agreements",
"Erisa",
"Existence",
"Expenses",
"Fees",
"Financial Statements",
"Forfeitures",
"Further Assurances",
"General",
"Governing Laws",
"Headings",
"Indemnifications",
"Indemnity",
"Insurances",
"Integration",
"Intellectual Property",
"Interests",
"Interpretations",
"Jurisdictions",
"Liens",
"Litigations",
"Miscellaneous",
"Modifications",
"No Conflicts",
"No Defaults",
"No Waivers",
"Non-Disparagement",
"Notices",
"Organizations",
"Participations",
"Payments",
"Positions",
"Powers",
"Publicity",
"Qualifications",
"Records",
"Releases",
"Remedies",
"Representations",
"Sales",
"Sanctions",
"Severability",
"Solvency",
"Specific Performance",
"Submission To Jurisdiction",
"Subsidiaries",
"Successors",
"Survival",
"Tax Withholdings",
"Taxes",
"Terminations",
"Terms",
"Titles",
"Transactions With Affiliates",
"Use Of Proceeds",
"Vacations",
"Venues",
"Vesting",
"Waiver Of Jury Trials",
"Waivers",
"Warranties",
"Withholdings"
],
"_type": "ClassLabel"
}
},
"builder_name": "lex_glue",
"dataset_name": "lex_glue",
"config_name": "ledgar",
"version": {
"version_str": "1.0.0",
"description": "",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 43358291,
"num_examples": 60000,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 6845581,
"num_examples": 10000,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 7143588,
"num_examples": 10000,
"dataset_name": null
}
},
"download_size": 27650585,
"dataset_size": 57347460,
"size_in_bytes": 84998045
},
"unfair_tos": {
"description": "The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube,\nEbay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of\nunfair contractual terms (sentences), meaning terms that potentially violate user rights\naccording to the European consumer law.",
"citation": "@article{lippi-etal-2019-claudette,\n title = \"{CLAUDETTE}: an automated detector of potentially unfair clauses in online terms of service\",\n author = {Lippi, Marco\n and Pa\u0142ka, Przemys\u0142aw\n and Contissa, Giuseppe\n and Lagioia, Francesca\n and Micklitz, Hans-Wolfgang\n and Sartor, Giovanni\n and Torroni, Paolo},\n journal = \"Artificial Intelligence and Law\",\n year = \"2019\",\n publisher = \"Springer\",\n url = \"https://doi.org/10.1007/s10506-019-09243-2\",\n pages = \"117--139\",\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}",
"homepage": "http://claudette.eui.eu",
"license": "",
"features": {
"text": {
"dtype": "string",
"_type": "Value"
},
"labels": {
"feature": {
"names": [
"Limitation of liability",
"Unilateral termination",
"Unilateral change",
"Content removal",
"Contract by using",
"Choice of law",
"Jurisdiction",
"Arbitration"
],
"_type": "ClassLabel"
},
"_type": "Sequence"
}
},
"builder_name": "lex_glue",
"dataset_name": "lex_glue",
"config_name": "unfair_tos",
"version": {
"version_str": "1.0.0",
"description": "",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 1041782,
"num_examples": 5532,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 303099,
"num_examples": 1607,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 452111,
"num_examples": 2275,
"dataset_name": null
}
},
"download_size": 865604,
"dataset_size": 1796992,
"size_in_bytes": 2662596
},
"case_hold": {
"description": "The CaseHOLD (Case Holdings on Legal Decisions) dataset contains approx. 53k multiple choice\nquestions about holdings of US court cases from the Harvard Law Library case law corpus.\nHoldings are short summaries of legal rulings accompany referenced decisions relevant for the present case.\nThe input consists of an excerpt (or prompt) from a court decision, containing a reference\nto a particular case, while the holding statement is masked out. The model must identify\nthe correct (masked) holding statement from a selection of five choices.",
"citation": "@inproceedings{Zheng2021,\n author = {Lucia Zheng and\n Neel Guha and\n Brandon R. Anderson and\n Peter Henderson and\n Daniel E. Ho},\n title = {When Does Pretraining Help? Assessing Self-Supervised Learning for\n Law and the CaseHOLD Dataset},\n year = {2021},\n booktitle = {International Conference on Artificial Intelligence and Law},\n}\n@article{chalkidis-etal-2021-lexglue,\n title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},\n author={Chalkidis, Ilias and\n Jana, Abhik and\n Hartung, Dirk and\n Bommarito, Michael and\n Androutsopoulos, Ion and\n Katz, Daniel Martin and\n Aletras, Nikolaos},\n year={2021},\n eprint={2110.00976},\n archivePrefix={arXiv},\n primaryClass={cs.CL},\n note = {arXiv: 2110.00976},\n}",
"homepage": "https://github.com/reglab/casehold",
"license": "",
"features": {
"context": {
"dtype": "string",
"_type": "Value"
},
"endings": {
"feature": {
"dtype": "string",
"_type": "Value"
},
"_type": "Sequence"
},
"label": {
"names": [
"0",
"1",
"2",
"3",
"4"
],
"_type": "ClassLabel"
}
},
"builder_name": "lex_glue",
"dataset_name": "lex_glue",
"config_name": "case_hold",
"version": {
"version_str": "1.0.0",
"description": "",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 74781706,
"num_examples": 45000,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 5989952,
"num_examples": 3600,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 6474603,
"num_examples": 3900,
"dataset_name": null
}
},
"download_size": 47303537,
"dataset_size": 87246261,
"size_in_bytes": 134549798
}
} |