# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An annotated dataset for classifying offensive or acceptable speech.""" import os import csv import datasets _CITATION = """\ @misc{ljubešić2019frenk, title={The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English}, author={Nikola Ljubešić and Darja Fišer and Tomaž Erjavec}, year={2019}, eprint={1906.02045}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/1906.02045} } """ _DESCRIPTION = """\ The FRENK Datasets of Socially Unacceptable Discourse in English. """ _HOMEPAGE = "https://www.clarin.si/repository/xmlui/handle/11356/1433" _LICENSE = "CLARIN.SI Licence ACA ID-BY-NC-INF-NORED 1.0" _URL = "https://huggingface.co./datasets/classla/FRENK-hate-en/resolve/main/data.zip" _CLASS_MAP_MULTICLASS = { 'Acceptable speech': 0, 'Inappropriate': 1, 'Background offensive': 2, 'Other offensive': 3, 'Background violence': 4, 'Other violence': 5, } _CLASS_MAP_BINARY = { 'Acceptable': 0, 'Offensive': 1, } class FRENKHateSpeechEN(datasets.GeneratorBasedBuilder): """The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English.""" VERSION = datasets.Version("0.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="binary", version=VERSION, description="Labels are either 'Offensive' or 'Acceptable'."), datasets.BuilderConfig(name="multiclass", version=VERSION, description="Labels are 'Acceptable speech', 'Other offensive', 'Background offensive', 'Inappropriate', 'Other violence', 'Background violence'"), ] DEFAULT_CONFIG_NAME = "binary" def _info(self): feature_dict = { "text": datasets.Value("string"), "target": datasets.Value("string"), "topic": datasets.Value("string"), } if self.config.name == "binary": features = datasets.Features( { **feature_dict, "label": datasets.ClassLabel(names=["Acceptable", "Offensive"]), } ) else: features = datasets.Features( { **feature_dict, "label": datasets.ClassLabel(names=['Acceptable speech', 'Other offensive', 'Background offensive', 'Inappropriate', 'Other violence', 'Background violence']), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_file = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ 'filepath': os.path.join(data_file, "train.tsv"), } ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ 'filepath': os.path.join(data_file, "dev.tsv"), } ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ 'filepath': os.path.join(data_file, "test.tsv"), } ), ] def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t") for id_, row in enumerate(reader): if id_ == 0: continue to_return_dict = { "text": row[1], "target": row[4] , "topic": row[5] } yield id_, { **to_return_dict, **{"label": _CLASS_MAP_BINARY[row[3]] if self.config.name == "binary" else _CLASS_MAP_MULTICLASS[row[2]]} }