Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 4,830 Bytes
7eb86fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7361018
7eb86fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An annotated dataset for classifying offensive or acceptable speech."""

import os
import csv

import datasets



_CITATION = """\
@misc{ljubešić2019frenk,
      title={The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English}, 
      author={Nikola Ljubešić and Darja Fišer and Tomaž Erjavec},
      year={2019},
      eprint={1906.02045},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/1906.02045}
}
"""

_DESCRIPTION = """\
The FRENK Datasets of Socially Unacceptable Discourse in English.
"""

_HOMEPAGE = "https://www.clarin.si/repository/xmlui/handle/11356/1433"

_LICENSE = "CLARIN.SI Licence ACA ID-BY-NC-INF-NORED 1.0"

_URL = "https://huggingface.co./datasets/classla/FRENK-hate-en/resolve/main/data.zip"

_CLASS_MAP_MULTICLASS = {
    'Acceptable speech': 0, 
    'Inappropriate': 1, 
    'Background offensive': 2,
    'Other offensive': 3, 
    'Background violence': 4,
    'Other violence': 5, 
}

_CLASS_MAP_BINARY = {
    'Acceptable': 0, 
    'Offensive': 1, 
}


class FRENKHateSpeechEN(datasets.GeneratorBasedBuilder):
    """The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English."""

    VERSION = datasets.Version("0.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="binary", version=VERSION, 
                                description="Labels are either 'Offensive' or 'Acceptable'."),
        datasets.BuilderConfig(name="multiclass", version=VERSION, 
                                description="Labels are 'Acceptable speech', 'Other offensive', 'Background offensive', 'Inappropriate', 'Other violence', 'Background violence'"),
    ]

    DEFAULT_CONFIG_NAME = "binary"  

    def _info(self):
        feature_dict = {
            "text": datasets.Value("string"),
            "target": datasets.Value("string"),
            "topic": datasets.Value("string"),
            }
        if self.config.name == "binary":
            features = datasets.Features(
                {
                    **feature_dict,
                    "label": datasets.ClassLabel(names=["Acceptable", "Offensive"]),
                }
            )
        else:
            features = datasets.Features(
                {
                    **feature_dict,
                    "label": datasets.ClassLabel(names=['Acceptable speech', 'Other offensive', 'Background offensive', 'Inappropriate', 'Other violence', 'Background violence']),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,

            citation=_CITATION,
        )


    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        data_file = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={
                    'filepath': os.path.join(data_file, "train.tsv"),
                    }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={
                    'filepath': os.path.join(data_file, "dev.tsv"),
                    }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={
                    'filepath': os.path.join(data_file, "test.tsv"),
                    }
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""

        with open(filepath, encoding="utf-8") as f:
            reader = csv.reader(f, delimiter="\t")
            for id_, row in enumerate(reader):
                if id_ == 0:
                    continue
                to_return_dict = {
                    "text": row[1],
                    "target": row[4] ,
                    "topic":  row[5]
                    }
                yield id_, {
                    **to_return_dict,
                    **{"label": _CLASS_MAP_BINARY[row[3]] if self.config.name == "binary" else _CLASS_MAP_MULTICLASS[row[2]]}
                }