Datasets:
File size: 4,830 Bytes
7eb86fb 7361018 7eb86fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An annotated dataset for classifying offensive or acceptable speech."""
import os
import csv
import datasets
_CITATION = """\
@misc{ljubešić2019frenk,
title={The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English},
author={Nikola Ljubešić and Darja Fišer and Tomaž Erjavec},
year={2019},
eprint={1906.02045},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/1906.02045}
}
"""
_DESCRIPTION = """\
The FRENK Datasets of Socially Unacceptable Discourse in English.
"""
_HOMEPAGE = "https://www.clarin.si/repository/xmlui/handle/11356/1433"
_LICENSE = "CLARIN.SI Licence ACA ID-BY-NC-INF-NORED 1.0"
_URL = "https://huggingface.co./datasets/classla/FRENK-hate-en/resolve/main/data.zip"
_CLASS_MAP_MULTICLASS = {
'Acceptable speech': 0,
'Inappropriate': 1,
'Background offensive': 2,
'Other offensive': 3,
'Background violence': 4,
'Other violence': 5,
}
_CLASS_MAP_BINARY = {
'Acceptable': 0,
'Offensive': 1,
}
class FRENKHateSpeechEN(datasets.GeneratorBasedBuilder):
"""The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English."""
VERSION = datasets.Version("0.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="binary", version=VERSION,
description="Labels are either 'Offensive' or 'Acceptable'."),
datasets.BuilderConfig(name="multiclass", version=VERSION,
description="Labels are 'Acceptable speech', 'Other offensive', 'Background offensive', 'Inappropriate', 'Other violence', 'Background violence'"),
]
DEFAULT_CONFIG_NAME = "binary"
def _info(self):
feature_dict = {
"text": datasets.Value("string"),
"target": datasets.Value("string"),
"topic": datasets.Value("string"),
}
if self.config.name == "binary":
features = datasets.Features(
{
**feature_dict,
"label": datasets.ClassLabel(names=["Acceptable", "Offensive"]),
}
)
else:
features = datasets.Features(
{
**feature_dict,
"label": datasets.ClassLabel(names=['Acceptable speech', 'Other offensive', 'Background offensive', 'Inappropriate', 'Other violence', 'Background violence']),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_file = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={
'filepath': os.path.join(data_file, "train.tsv"),
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={
'filepath': os.path.join(data_file, "dev.tsv"),
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={
'filepath': os.path.join(data_file, "test.tsv"),
}
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t")
for id_, row in enumerate(reader):
if id_ == 0:
continue
to_return_dict = {
"text": row[1],
"target": row[4] ,
"topic": row[5]
}
yield id_, {
**to_return_dict,
**{"label": _CLASS_MAP_BINARY[row[3]] if self.config.name == "binary" else _CLASS_MAP_MULTICLASS[row[2]]}
} |