Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
100K - 1M
License:
File size: 4,803 Bytes
d0dc513 d934cf6 d0dc513 d934cf6 d0dc513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
annotations_creators:
- expert-generated
language_creators:
- other
language:
- pl
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: 'Polemo2'
size_categories:
- 8K
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
---
# Polemo2
## Description
The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, hotels, products, and university. It is human-annotated on a level of full reviews and individual sentences. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in the 2+1 scheme, which gives a total of 197,046 annotations. About 85% of the reviews are from the medicine and hotel domains. Each review is annotated with four labels: positive, negative, neutral, or ambiguous.
## Tasks (input, output and metrics)
The task is to predict the correct label of the review.
**Input** ('*text*' column): sentence
**Output** ('*target*' column): label for sentence sentiment ('zero': neutral, 'minus': negative, 'plus': positive, 'amb': ambiguous)
**Domain**: Online reviews
**Measurements**: Accuracy, F1 Macro
**Example**:
*Na samym wejściu hotel śmierdzi . W pokojach jest pleśń na ścianach , brudny dywan . W łazience śmierdzi chemią , hotel nie grzeje w pokojach panuje chłód . Wyposażenie pokoju jest stare , kran się rusza , drzwi na balkon nie domykają się . Jedzenie jest w małych ilościach i nie smaczne . Nie polecam nikomu tego hotelu .* → **1 (negative)**
## Data splits
| Subset | Cardinality |
|--------|------------:|
| train | 6573 |
| val | 823 |
| test | 820 |
## Class distribution in train
| Class | Fraction |
|-------|---------:|
| zero | 0.147726 |
| minus | 0.375628 |
| plus | 0.277499 |
| amb | 0.199148 |
## Citation
```
@inproceedings{kocon-etal-2019-multi,
title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews",
author = "Koco{\'n}, Jan and
Mi{\l}kowski, Piotr and
Za{\'s}ko-Zieli{\'n}ska, Monika",
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K19-1092",
doi = "10.18653/v1/K19-1092",
pages = "980--991",
abstract = "In this article we present an extended version of PolEmo {--} a corpus of consumer reviews from 4 domains: medicine, hotels, products and school. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in 2+1 scheme, which gives a total of 197,046 annotations. We obtained a high value of Positive Specific Agreement, which is 0.91 for texts and 0.88 for sentences. PolEmo 2.0 is publicly available under a Creative Commons copyright license. We explored recent deep learning approaches for the recognition of sentiment, such as Bi-directional Long Short-Term Memory (BiLSTM) and Bidirectional Encoder Representations from Transformers (BERT).",
}
```
## License
```
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
```
## Links
[HuggingFace](https://huggingface.co./datasets/clarin-pl/polemo2-official)
[Source](https://clarin-pl.eu/dspace/handle/11321/710)
[Paper](https://aclanthology.org/K19-1092/)
## Examples
### Loading
```python
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("clarin-pl/polemo2-official")
pprint(dataset['train'][0])
# {'target': 1,
# 'text': 'Na samym wejściu hotel śmierdzi . W pokojach jest pleśń na ścianach '
# ', brudny dywan . W łazience śmierdzi chemią , hotel nie grzeje w '
# 'pokojach panuje chłód . Wyposażenie pokoju jest stare , kran się '
# 'rusza , drzwi na balkon nie domykają się . Jedzenie jest w małych '
# 'ilościach i nie smaczne . Nie polecam nikomu tego hotelu .'}
```
### Evaluation
```python
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("clarin-pl/polemo2-official")
references = dataset["test"]["target"]
# generate random predictions
predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]
acc = load_metric("accuracy")
f1 = load_metric("f1")
acc_score = acc.compute(predictions=predictions, references=references)
f1_score = f1.compute(predictions=predictions, references=references, average='macro')
pprint(acc_score)
pprint(f1_score)
# {'accuracy': 0.2475609756097561}
# {'f1': 0.23747048177471738}
```
|