Datasets:
cjvt
/

solar3 / solar3.py
Matej Klemen
Add paragraph-level aggregation
b3d2e59
import logging
import os
import re
import xml.etree.ElementTree as ET
from copy import deepcopy
from itertools import groupby
from typing import Optional
import datasets
_CITATION = """\
@misc{solar3.0,
title = {Developmental corpus {\v S}olar 3.0},
author = {Arhar Holdt, {\v S}pela and Rozman, Tadeja and Stritar Ku{\v c}uk, Mojca and Krek, Simon and Krap{\v s} Vodopivec, Irena and Stabej, Marko and Pori, Eva and Goli, Teja and Lavri{\v c}, Polona and Laskowski, Cyprian and Kocjan{\v c}i{\v c}, Polonca and Klemenc, Bojan and Krsnik, Luka and Kosem, Iztok},
url = {http://hdl.handle.net/11356/1589},
note = {Slovenian language resource repository {CLARIN}.{SI}},
year = {2022}
}
"""
_DESCRIPTION = """\
Šolar is a developmental corpus of 5485 school texts (e.g., essays), written by students in Slovenian secondary schools
(age 15-19) and pupils in the 7th-9th grade of primary school (13-15), with a small percentage also from the 6th grade.
Part of the corpus (1516 texts) is annotated with teachers' corrections using a system of labels described in the
document available at https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1589/Smernice-za-oznacevanje-korpusa-Solar_V1.1.pdf (in Slovenian).
"""
_HOMEPAGE = "http://hdl.handle.net/11356/1589"
_LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
_URLS = {
"solar_tei": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1589/Solar.TEI.zip"
}
XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}"
def namespace(element):
# https://stackoverflow.com/a/12946675
m = re.match(r'\{.*\}', element.tag)
return m.group(0) if m else ''
def resolve_element(tag_el, ne_tag: Optional[str] = "O"):
if not tag_el.tag.endswith(("w", "pc", "seg")):
return []
if tag_el.tag.endswith(("w", "pc")):
form = tag_el.text.strip()
lemma = tag_el.text.strip() if tag_el.tag.endswith("pc") else tag_el.attrib["lemma"]
ana = tag_el.attrib["ana"] # JOS/MTE specifications
msd = tag_el.attrib["msd"] # UD specifications
ret_ne_tag = ne_tag
id_tag = tag_el.attrib[f"{XML_NAMESPACE}id"]
space_after = False if "join" in tag_el.attrib and tag_el.attrib["join"]=="right" else True
return [(id_tag, form, lemma, ana, msd, ret_ne_tag, space_after)]
# Named entities: words and punctuation nested directly below current element
elif tag_el.tag.endswith("seg"):
anns = []
ret_ne_tag = tag_el.attrib["subtype"].upper()
for idx_child, curr_child in enumerate(tag_el):
anns.extend(resolve_element(curr_child, ne_tag=f"B-{ret_ne_tag}" if idx_child == 0 else f"I-{ret_ne_tag}"))
return anns
def extract_sent_id(tok_id):
# e.g., `extract_sent_id("#solar1s.3.2.44") == "solar1s.3.2"` or `extract_sent_id("solar1s.3.2.44") == "solar1s.3.2"`
_tok_id = tok_id[1:] if tok_id.startswith("#") else tok_id
return ".".join(_tok_id.split(".")[: -1])
def find_involved_sents(correction_group_el):
src_sent_ids = set()
tgt_sent_ids = set()
for _curr_corr in correction_group_el:
sent_ids = list(map(lambda _tok_id: extract_sent_id(_tok_id),
_curr_corr.attrib["target"].split(" ")))
for _s_id in sent_ids:
if "t" in _s_id:
tgt_sent_ids.add(_s_id)
else:
src_sent_ids.add(_s_id)
return sorted(list(src_sent_ids)), sorted(list(tgt_sent_ids))
def read_data(data_path):
data = {} # ID_sent -> sentence_metadata
tree = ET.parse(data_path)
root = tree.getroot()
NAMESPACE = namespace(root)
for curr_text in root.iterfind(f".//{NAMESPACE}div"):
id_text = curr_text.attrib[f"{XML_NAMESPACE}id"]
bibl_el = curr_text.find(f"{NAMESPACE}bibl")
if bibl_el is None:
text_title = "Unknown_title"
logging.warning(f"The following text does not have a 'bibl' element: {curr_text.attrib}. "
f"Setting title to 'Unknown_title'")
is_manually_validated = False
else:
text_title = bibl_el.attrib["n"]
note_el = bibl_el.find(f"{NAMESPACE}note")
is_manually_validated = note_el.text == "DA"
for idx_par, curr_par in enumerate(curr_text.iterfind(f".//{NAMESPACE}p")):
for idx_sent, curr_sent in enumerate(curr_par.iterfind(f".//{NAMESPACE}s")):
id_sent = curr_sent.attrib[f"{XML_NAMESPACE}id"]
ids, forms, lemmas, msds, nes, spaces_after = [], [], [], [], [], []
msds_jos, msds_ud = [], []
for curr_el in curr_sent:
curr_annotations = resolve_element(curr_el)
for curr_ann in curr_annotations:
ids.append(curr_ann[0])
forms.append(curr_ann[1])
lemmas.append(curr_ann[2])
msds_jos.append(curr_ann[3])
msds_ud.append(curr_ann[4])
nes.append(curr_ann[5])
spaces_after.append(curr_ann[6])
data[id_sent] = {
"id_doc": id_text,
"doc_title": text_title,
"idx_par": idx_par,
"id_token": ids, "form": forms, "lemma": lemmas, "ana": msds_jos, "msd": msds_ud, "ne_tag": nes, "space_after": spaces_after,
"is_manually_validated": is_manually_validated
}
return data
class Solar3(datasets.GeneratorBasedBuilder):
"""Šolar is a developmental corpus of school texts (e.g., essays), annotated with metadata and (partially)
with teachers' corrections. """
VERSION = datasets.Version("3.0.2")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="sentence_level", version=VERSION,
description="Annotations at sentence-level."),
datasets.BuilderConfig(name="paragraph_level", version=VERSION,
description="Annotations at paragraph-level."),
datasets.BuilderConfig(name="document_level", version=VERSION,
description="Annotations at document-level."),
]
DEFAULT_CONFIG_NAME = "sentence_level" # default = annotations as provided in the original data
def _info(self):
features = datasets.Features(
{
"id_doc": datasets.Value("string"),
"doc_title": datasets.Value("string"),
"is_manually_validated": datasets.Value("bool"),
"src_tokens": datasets.Sequence(datasets.Value("string")),
"src_ling_annotations": {
"lemma": datasets.Sequence(datasets.Value("string")),
"ana": datasets.Sequence(datasets.Value("string")),
"msd": datasets.Sequence(datasets.Value("string")),
"ne_tag": datasets.Sequence(datasets.Value("string")),
"space_after": datasets.Sequence(datasets.Value("bool"))
},
"tgt_tokens": datasets.Sequence(datasets.Value("string")),
"tgt_ling_annotations": {
"lemma": datasets.Sequence(datasets.Value("string")),
"ana": datasets.Sequence(datasets.Value("string")),
"msd": datasets.Sequence(datasets.Value("string")),
"ne_tag": datasets.Sequence(datasets.Value("string")),
"space_after": datasets.Sequence(datasets.Value("bool"))
},
"corrections": [
{
"idx_src": datasets.Sequence(datasets.Value("int32")),
"idx_tgt": datasets.Sequence(datasets.Value("int32")),
"corr_types": datasets.Sequence(datasets.Value("string"))
}
]
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS["solar_tei"]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"source_path": os.path.join(data_dir, "Solar.TEI", "solar-orig.xml"),
"target_path": os.path.join(data_dir, "Solar.TEI", "solar-corr.xml"),
"links_path": os.path.join(data_dir, "Solar.TEI", "solar-errs.xml")
}
)
]
@staticmethod
def generate_sentences(source_path, target_path, links_path):
source_data = read_data(source_path)
target_data = read_data(target_path)
data = ET.parse(links_path)
root = data.getroot()
NAMESPACE = namespace(root)
for idx_corr, corrected_sent in enumerate(root.iterfind(f"{NAMESPACE}linkGrp")):
# Involved sentences according to the IDs of token mappings - 'corresp' does not list all of them!
# (possible bug in data)
involved_src_sents, involved_tgt_sents = find_involved_sents(corrected_sent)
id_doc, doc_title, is_manually_validated = None, None, False
src_sent_data, tgt_sent_data = {}, {}
tok2position = {}
assert len(involved_src_sents) > 0 or len(involved_tgt_sents) > 0
if len(involved_src_sents) > 0:
src_sent_data = deepcopy(source_data[involved_src_sents[0]])
if not isinstance(src_sent_data["idx_par"], list):
src_sent_data["idx_par"] = [src_sent_data["idx_par"]]
for src_sent_id in involved_src_sents[1:]:
curr_sent_data = source_data[src_sent_id]
src_sent_data["id_token"].extend(curr_sent_data["id_token"])
src_sent_data["idx_par"].append(curr_sent_data["idx_par"])
src_sent_data["form"].extend(curr_sent_data["form"])
src_sent_data["lemma"].extend(curr_sent_data["lemma"])
src_sent_data["ana"].extend(curr_sent_data["ana"])
src_sent_data["msd"].extend(curr_sent_data["msd"])
src_sent_data["ne_tag"].extend(curr_sent_data["ne_tag"])
src_sent_data["space_after"].extend(curr_sent_data["space_after"])
id_doc = src_sent_data["id_doc"]
doc_title = src_sent_data["doc_title"]
is_manually_validated |= src_sent_data["is_manually_validated"]
for _pos, _tok in enumerate(src_sent_data["id_token"]):
tok2position[_tok] = _pos
if len(involved_tgt_sents) > 0:
tgt_sent_data = deepcopy(target_data[involved_tgt_sents[0]])
if not isinstance(tgt_sent_data["idx_par"], list):
tgt_sent_data["idx_par"] = [tgt_sent_data["idx_par"]]
for tgt_sent_id in involved_tgt_sents[1:]:
curr_sent_data = target_data[tgt_sent_id]
tgt_sent_data["id_token"].extend(curr_sent_data["id_token"])
tgt_sent_data["idx_par"].append(curr_sent_data["idx_par"])
tgt_sent_data["form"].extend(curr_sent_data["form"])
tgt_sent_data["lemma"].extend(curr_sent_data["lemma"])
tgt_sent_data["ana"].extend(curr_sent_data["ana"])
tgt_sent_data["msd"].extend(curr_sent_data["msd"])
tgt_sent_data["ne_tag"].extend(curr_sent_data["ne_tag"])
tgt_sent_data["space_after"].extend(curr_sent_data["space_after"])
id_doc = tgt_sent_data["id_doc"]
doc_title = tgt_sent_data["doc_title"]
is_manually_validated |= tgt_sent_data["is_manually_validated"]
for _pos, _tok in enumerate(tgt_sent_data["id_token"]):
tok2position[_tok] = _pos
corr_data = []
for token_info in corrected_sent.findall(f"{NAMESPACE}link"):
connections = token_info.attrib["target"].split(" ")
corrections = token_info.attrib["type"]
if corrections == "ID":
continue
src_inds, tgt_inds = [], []
corr_types = []
for curr_corr in corrections.split("|"):
corr_types.append(curr_corr)
for curr_tok in connections:
# Token IDs have an index at the end, but it is 1-based; convert it to 0-based
idx_tok = tok2position[curr_tok[1:]]
if "t" in curr_tok: # target token
tgt_inds.append(idx_tok)
else: # source token
src_inds.append(idx_tok)
corr_data.append({"idx_src": src_inds, "idx_tgt": tgt_inds, "corr_types": corr_types})
yield idx_corr, {
"id_doc": id_doc[:-1], # doc ID without the "s" or "t" info
"doc_title": doc_title,
"is_manually_validated": is_manually_validated,
"idx_src_par": src_sent_data.get("idx_par", []),
"id_src_tokens": src_sent_data.get("id_token", []),
"src_tokens": src_sent_data.get("form", []),
"src_ling_annotations": {
"lemma": src_sent_data.get("lemma", []),
"ana": src_sent_data.get("ana", []),
"msd": src_sent_data.get("msd", []),
"ne_tag": src_sent_data.get("ne_tag", []),
"space_after": src_sent_data.get("space_after", [])
},
"idx_tgt_par": tgt_sent_data.get("idx_par", []),
"id_tgt_tokens": tgt_sent_data.get("id_token", []),
"tgt_tokens": tgt_sent_data.get("form", []),
"tgt_ling_annotations": {
"lemma": tgt_sent_data.get("lemma", []),
"ana": tgt_sent_data.get("ana", []),
"msd": tgt_sent_data.get("msd", []),
"ne_tag": tgt_sent_data.get("ne_tag", []),
"space_after": tgt_sent_data.get("space_after", [])
},
"corrections": corr_data
}
@staticmethod
def aggregate_pars(sent_level_data):
# TODO: the code is a copypaste of the document aggregation, with an additional groupby - could use a refactor
uniq_idx_par = 0
for idx_doc, (curr_id, curr_group) in enumerate(groupby(sent_level_data, key=lambda tup: tup[1]["id_doc"])):
curr_instances = list(map(lambda tup: tup[1], curr_group)) # remove the redundant index info from datasets
# Some sentences have no `idx_src_par` because they are added by the teacher (not present in the source)
for idx_par, curr_par_group in groupby(
curr_instances,
key=lambda _inst: _inst["idx_src_par"][0] if len(_inst["idx_src_par"]) > 0 else
_inst["idx_tgt_par"][0]
):
src_tokens, tgt_tokens, mapped_corrections = [], [], []
src_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
tgt_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
seen_src_tokens, seen_tgt_tokens = {}, {}
src_base, tgt_base = 0, 0
prev_src_base, prev_tgt_base = 0, 0
doc_title, is_validated = None, None
for curr_inst in curr_par_group:
doc_title, is_validated = curr_inst["doc_title"], curr_inst["is_manually_validated"]
id_src_toks, id_tgt_toks = curr_inst["id_src_tokens"], curr_inst["id_tgt_tokens"]
curr_src_toks, curr_tgt_toks = curr_inst["src_tokens"], curr_inst["tgt_tokens"]
curr_src_anns, curr_tgt_anns = curr_inst["src_ling_annotations"], curr_inst["tgt_ling_annotations"]
curr_corrs = curr_inst["corrections"]
num_added_src, num_added_tgt = 0, 0
for idx_position, (id_tok, tok) in enumerate(zip(id_src_toks, curr_src_toks)):
if id_tok not in seen_src_tokens:
src_tokens.append(tok)
src_ling_anns["lemma"].append(curr_src_anns["lemma"][idx_position])
src_ling_anns["ana"].append(curr_src_anns["ana"][idx_position])
src_ling_anns["msd"].append(curr_src_anns["msd"][idx_position])
src_ling_anns["ne_tag"].append(curr_src_anns["ne_tag"][idx_position])
src_ling_anns["space_after"].append(curr_src_anns["space_after"][idx_position])
seen_src_tokens[id_tok] = tok
num_added_src += 1
for idx_position, (id_tok, tok) in enumerate(zip(id_tgt_toks, curr_tgt_toks)):
if id_tok not in seen_tgt_tokens:
tgt_tokens.append(tok)
tgt_ling_anns["lemma"].append(curr_tgt_anns["lemma"][idx_position])
tgt_ling_anns["ana"].append(curr_tgt_anns["ana"][idx_position])
tgt_ling_anns["msd"].append(curr_tgt_anns["msd"][idx_position])
tgt_ling_anns["ne_tag"].append(curr_tgt_anns["ne_tag"][idx_position])
tgt_ling_anns["space_after"].append(curr_tgt_anns["space_after"][idx_position])
seen_tgt_tokens[id_tok] = tok
num_added_tgt += 1
if num_added_src == 0:
src_base, prev_src_base = prev_src_base, src_base
if num_added_tgt == 0:
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
for corr in curr_corrs:
mapped_corrections.append({
"idx_src": list(map(lambda _i: src_base + _i, corr["idx_src"])),
"idx_tgt": list(map(lambda _i: tgt_base + _i, corr["idx_tgt"])),
"corr_types": corr["corr_types"]
})
src_base += num_added_src
tgt_base += num_added_tgt
if num_added_src == 0:
src_base, prev_src_base = prev_src_base, src_base
if num_added_tgt == 0:
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
yield uniq_idx_par, {
"id_doc": curr_id,
"doc_title": doc_title,
"is_manually_validated": is_validated,
"src_tokens": src_tokens,
"src_ling_annotations": src_ling_anns,
"tgt_tokens": tgt_tokens,
"tgt_ling_annotations": tgt_ling_anns,
"corrections": mapped_corrections
}
uniq_idx_par += 1
@staticmethod
def aggregate_docs(sent_level_data):
# NOTE: assuming here that `sent_level_data` is pre-sorted by id_doc, which is done in the raw data
for idx_doc, (curr_id, curr_group) in enumerate(groupby(sent_level_data, key=lambda tup: tup[1]["id_doc"])):
curr_instances = map(lambda tup: tup[1], curr_group) # remove the redundant index info from datasets
src_tokens, tgt_tokens, mapped_corrections = [], [], []
src_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
tgt_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
seen_src_tokens, seen_tgt_tokens = {}, {}
# Need to keep the current base position of source and target tokens AND previous base position:
# A source may map into multiple targets (or vice versa), but we do not want to write it twice in a doc.
# Therefore, when the same sentence is encountered twice, the base is shifted to the previous one to map
# the indices of corrected tokens correctly.
src_base, tgt_base = 0, 0
prev_src_base, prev_tgt_base = 0, 0
doc_title, is_validated = None, None
for curr_inst in curr_instances:
doc_title, is_validated = curr_inst["doc_title"], curr_inst["is_manually_validated"]
id_src_toks, id_tgt_toks = curr_inst["id_src_tokens"], curr_inst["id_tgt_tokens"]
curr_src_toks, curr_tgt_toks = curr_inst["src_tokens"], curr_inst["tgt_tokens"]
curr_src_anns, curr_tgt_anns = curr_inst["src_ling_annotations"], curr_inst["tgt_ling_annotations"]
curr_corrs = curr_inst["corrections"]
num_added_src, num_added_tgt = 0, 0
for idx_position, (id_tok, tok) in enumerate(zip(id_src_toks, curr_src_toks)):
if id_tok not in seen_src_tokens:
src_tokens.append(tok)
src_ling_anns["lemma"].append(curr_src_anns["lemma"][idx_position])
src_ling_anns["ana"].append(curr_src_anns["ana"][idx_position])
src_ling_anns["msd"].append(curr_src_anns["msd"][idx_position])
src_ling_anns["ne_tag"].append(curr_src_anns["ne_tag"][idx_position])
src_ling_anns["space_after"].append(curr_src_anns["space_after"][idx_position])
seen_src_tokens[id_tok] = tok
num_added_src += 1
for idx_position, (id_tok, tok) in enumerate(zip(id_tgt_toks, curr_tgt_toks)):
if id_tok not in seen_tgt_tokens:
tgt_tokens.append(tok)
tgt_ling_anns["lemma"].append(curr_tgt_anns["lemma"][idx_position])
tgt_ling_anns["ana"].append(curr_tgt_anns["ana"][idx_position])
tgt_ling_anns["msd"].append(curr_tgt_anns["msd"][idx_position])
tgt_ling_anns["ne_tag"].append(curr_tgt_anns["ne_tag"][idx_position])
tgt_ling_anns["space_after"].append(curr_tgt_anns["space_after"][idx_position])
seen_tgt_tokens[id_tok] = tok
num_added_tgt += 1
if num_added_src == 0:
src_base, prev_src_base = prev_src_base, src_base
if num_added_tgt == 0:
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
for corr in curr_corrs:
mapped_corrections.append({
"idx_src": list(map(lambda _i: src_base + _i, corr["idx_src"])),
"idx_tgt": list(map(lambda _i: tgt_base + _i, corr["idx_tgt"])),
"corr_types": corr["corr_types"]
})
src_base += num_added_src
tgt_base += num_added_tgt
if num_added_src == 0:
src_base, prev_src_base = prev_src_base, src_base
if num_added_tgt == 0:
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
yield idx_doc, {
"id_doc": curr_id,
"doc_title": doc_title,
"is_manually_validated": is_validated,
"src_tokens": src_tokens,
"src_ling_annotations": src_ling_anns,
"tgt_tokens": tgt_tokens,
"tgt_ling_annotations": tgt_ling_anns,
"corrections": mapped_corrections
}
def _generate_examples(self, source_path, target_path, links_path):
sent_level_data = list(Solar3.generate_sentences(source_path, target_path, links_path))
if self.config.name == "sentence_level":
# Remove IDs and indices that are only useful for aggregating the document-level data
for i, instance in sent_level_data:
yield i, {_k: _v for _k, _v in instance.items() if _k not in {"id_src_tokens", "id_tgt_tokens",
"idx_src_par", "idx_tgt_par"}}
elif self.config.name == "paragraph_level":
yield from list(Solar3.aggregate_pars(sent_level_data))
else:
yield from list(Solar3.aggregate_docs(sent_level_data))